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Chapter 0: Introdu
tionThis book 
on
erns knots and links in dynami
al systems.Knot and link theory is an appealing subje
t. The basi
 ideas and results maybe appre
iated intuitively, simply by playing with pie
es of string (e.g.[11, 1℄).Nonetheless, in spite of seafarers' development of sophisti
ated knots over thou-sands of years, the mathemati
al theory of knots began only in the nineteenth
entury. Its origins lie in Gauss's interest in ele
tromagneti
 �eld lines [67℄ and inattempts to 
lassify knotted strings in the �ther, whi
h Lord Kelvin and othersthought might 
orrespond to di�erent 
hemi
al elements [176, 174℄. It rapidlyshed its physi
al origins and be
ame a 
ornerstone of low-dimensional topology.The roots of dynami
al systems theory are 
onsiderably older and more tan-gled; they may be found in the Prin
ipia Mathemati
a of Isaa
 Newton and inattempts to model the motions of heavenly bodies. Ab initio the subje
t requiresmore te
hni
al apparatus: the di�erential and integral 
al
ulus, for a start; butat the same time it has kept 
loser tou
h with its physi
al origins. Moreover, inthe last hundred years, it too has (re)a
quired a strong geometri
al 
avor. Infa
t it was in an assault on the (restri
ted) three body problem of 
elestial me-
hani
s [145℄, in response to the prize 
ompetition to 
elebrate the 60th birthdayof King Os
ar II of Sweden and Norway, that Henri Poin
ar�e essentially inventedthe modern, geometri
 theory of dynami
al systems. He went on to develop hisideas in 
onsiderable detail in Nouvelles Methodes de la M�e
anique Celeste [146℄.Today, following this work, that of the Soviet s
hool, in
luding Pontriagin, An-dronov, Kolmogorov, Anosov, and Arnol'd, and of Moser and Smale and theirstudents in the West, the subje
t has rea
hed a 
ertain maturity. Over the lasttwenty years, it has es
aped from Mathemati
s Departments into the s
ienti�
world at large, and in its somewhat ill-de�ned in
arnations as \
haos theory"and \nonlinear s
ien
e," the methods and ideas of dynami
al systems theory are�nding broad appli
ation.The basi
 world of a dynami
al system is its state spa
e: a (smooth) mani-fold, M , whi
h 
onstitutes all possible states of the system, and a mapping or
ow de�ned on M . In one of our prin
ipal motivating examples, systems of�rst order ordinary di�erential equations (ODEs), the ve
tor �eld thus spe
i�edgenerates a 
ow �t :M !M; t 2 R. The general problem ta
kled by dynami
alsystems theorists is to des
ribe �t geometri
ally, via its a
tion on subsets of M .This implies 
lassi�
ation of the asymptoti
 behaviors of all possible solutions,by �nding �xed points, periodi
 orbits and more exoti
 re
urrent sets, as well asthe orbits whi
h 
ow into and out of them. In many appli
ations �t also dependson external parameters, and the topologi
al 
hanges or bifur
ations that o

urin M as these parameters are varied, are also of interest. In studying these andrelated phenomena, one abandons the fruitless sear
h for 
losed form solutions1



2 
hapter 0. introdu
tionin terms of elementary or spe
ial fun
tions, and seeks instead qualitative infor-mation.Over the past de
ade, knot theory, on
e in the inner san
tum of pure math-emati
s, has been leaking out into other �elds through several su

essful appli-
ations. These range from mole
ular biology, involving topologi
al stru
tures of
losed DNA strands [173℄, to physi
s, led by surprising 
onne
tions with statis-ti
al me
hani
s [99℄ and quantum �eld theory [197, 14℄. Likewise, over the pastten to �fteen years, several attempts have been made to draw knot theory anddynami
al systems 
loser together. The key idea is simple: a 
losed (periodi
)orbit in a three-dimensional 
ow is an embedding of the 
ir
le, S1, into thethree-manifold that 
onstitutes the state spa
e of the system, hen
e it is a knot.Similarly, a �nite 
olle
tion of periodi
 orbits de�nes a link.Several natural questions immediately arise, dire
ted at the following goal:given a 
ow, perhaps generated by the ve
tor �eld of a spe
i�
 ODE, des
ribethe knot and link types to be found among its periodi
 orbits. Do nontrivialknots o

ur? How many distin
t knot types are represented? How many of ea
htype? Do well-known families, su
h as torus knots, algebrai
 knots, or rationaltangles, appear in parti
ular 
ases? In any 
ases? Are there \new" familiesof knots and links whi
h arise naturally in 
ertain 
ows? Do Hamiltonian andother systems with 
onservation laws or symmetries support preferred families oflinks? Do \
haoti
" 
ows 
ontain inherently ri
her knotting than simple (Morse-Smale) 
ows? Indeed, how 
ompli
ated 
an things get? { is there a single ODEamong whose periodi
 orbits 
an be found representatives of all knots and links?Su
h questions might o

ur to topologists. Indeed, it was R.F. Williams, in the
ontext of a seminar on turbulen
e 
ondu
ted in the Mathemati
s Departmentat Berkeley in 1976, who �rst 
onje
tured that nontrivial knotting o

urs in awell-known set of ODEs 
alled the Lorenz equations [193℄.Dynami
ists, in 
ontrast, might seek to use knot and link invariants to de-s
ribe periodi
 orbits and so help them better understand the underlying ODEs.In a parametrised family of 
ows, for example, one 
an observe sequen
es ofbifur
ations in whi
h a simple invariant set 
ontaining, say, one or two periodi
orbits, \grows" into a 
haoti
 set of great 
omplexity, 
ontaining a 
ountablein�nity of periodi
 orbits. In many 
ases, the periodi
 orbits are dense in the setof interest; sometimes that set is a so-
alled strange attra
tor. The existen
e-uniqueness theorem for solutions of ODEs implies that, as periodi
 orbits deformunder parameter variation, they 
annot interse
t or pass through one another.Knot and link types therefore provide topologi
al invariants whi
h may be at-ta
hed to families of periodi
 orbits. Can su
h invariants be used to identifyorbit genealogies { to tra
e the bifur
ation sequen
es in whi
h they arose? (Afavorite problem is to des
ribe bifur
ation sequen
es in the two-parameter familyof maps introdu
ed by H�enon [83℄, whi
h provides a model for Smale's famoushorseshoe map.) Can operations in whi
h new knots are 
reated from old, su
has 
omposition and 
abling, be asso
iated with spe
i�
 lo
al bifur
ations? Is the
omplexity of knotting related to other measures of dynami
al 
omplexity, su
h



0.1. the 
ontents of this volume 3as topologi
al entropy? Does knot theory provide �ner invariants than entropyfor the 
lassi�
ation of 
ows?Of 
ourse, sin
e periodi
 orbits form knots only in three-dimensional 
ows,appli
ations to dynami
al systems in general are severely limited. Nonetheless,many of the ri
h and wonderful behaviors that 
urrently engage dynami
istsare already manifest in three dimensions, and so it seems well worth applyingwhatever tools we 
an to this 
ase. In any event, we hope the reader will �ndthe subje
t as beautiful, and attra
tive, as we do.0.1 The 
ontents of this volumeThis book attempts to bring together two largely disparate and well developed�elds, whi
h have thus far only met in the pages of spe
ialised resear
h journals.As su
h, it 
annot substitute for a proper 
ourse or text in either �eld. Chapter1, to follow immediately, provides a rapid review of the prin
ipal aspe
ts of knottheory and dynami
al systems theory required for the remainder of the book.In Chapter 2 we develop the major tool whi
h allows us to pass ba
k and forthbetween hyperboli
 
ows and knots: the template. This was introdu
ed (underthe name \knot holder") over twelve years ago in two papers of Birman andWilliams [23, 24℄. In dynami
al systems it is 
ommon to use Poin
ar�e or returnmaps to redu
e a 
ow to a mapping on a manifold of one lower dimension. WhilePoin
ar�e maps preserve 
ertain periodi
 orbit data, information on how theorbits are embedded in the 
ow is lost. The template preserves that information,and likewise redu
es dimension. In Chapter 2 we develop a host of relatedtools: subtemplates, template in
ations and renormalisations, and the symboli
language whi
h allows us to manipulate templates and explore relations amongthem. We also introdu
e some of the parti
ular (families of) templates whi
hwill 
on
ern us later.Equipped with our basi
 tools, in Chapter 3 we obtain some general results ontemplate knots and links, in
luding the fa
ts that, while spe
i�
 templates maynot 
ontain all knots and links, every template 
ontains in�nitely many distin
tknot types. We then des
ribe a universal template, whi
h does 
ontain all (tame)knots and links, and whi
h, moreover, arises rather naturally in 
ertain 
lassesof stru
turally stable three dimensional 
ows. In the �nal se
tion, we explorethe \embedding problem:" the question of whi
h templates 
an be embedded inother templates. By 
onsidering isotopi
 embeddings, we are able to re
ogniseuniversal templates hidden in ostensibly simpler ones.The fourth 
hapter 
on
erns bifur
ations and knots, and dire
tly addressesthe kinds of dynami
al systems questions raised in our opening paragraphs. Inparti
ular we fo
us on spe
i�
 templates related to the H�enon mapping and the
reation of horseshoes. Here, in 
ontrast to the limitless ri
hes of Chapter 3,there are severe restri
tions on links (all 
rossings are of one sign), whi
h leadto uniqueness results and order relations on orbit 
reation in lo
al bifur
ations.We also explore knot types born in 
ertain global or homo
lini
 bifur
ations,by lifting the 
ontrast between dynami
ally simple and dynami
ally 
omplex



4 
hapter 0. introdu
tionbifur
ations to the knot-theoreti
 level. In so doing, we derive a rather generalset of suÆ
ient 
onditions for a third-order ODE to support all links as periodi
orbits.Chapter 5 returns to basi
 template theory and presents the 
urrent stateof a�airs in template 
lassi�
ation and invariant theory. We 
ommen
e witha dis
ussion of what a sensible de�nition of template equivalen
e should be,based on intuition developed in Chapters 3 and 4, and 
ontinue with a primitivebut useful invariant: a zeta-fun
tion for a restri
ted 
lass of templates. Thiswill be seen to relate ni
ely to the underlying symboli
 dynami
s, yielding aneasily-
omputed invariant whi
h en
odes \twisting" information in the 
ompa
tpa
kage of a rational fun
tion.Chapter 6 is 
omprised of a short list of 
on
luding remarks and open pro-belms that pertain to template theory and its appli
ations.Throughout Chapters 2-5 we strive to present, for the �rst time, a fairly
omplete pi
ture of the theory of templates. As su
h, we in
lude key resultsof Franks, Birman, Williams and others, although we fo
us primarily on ourown work, relegating to an appendix some related work beyond the immediates
ope of this monograph. A

ordingly, Appendix A 
ontains brief reviews ofwork by Morgan, Wada, and others on nonsingular Morse-Smale 
ows on three-manifolds, whi
h 
ontain only limited 
lasses of knots. This is then 
ontrastedwith the work of Franks and work in progress by Sullivan on nonsingular Smale
ows on the three-sphere.Despite the title, we in no way 
laim to in
lude every major result in theoverlap of dynami
s and knot theory. In parti
ular, there is a natural di
hotomybetween knots arising from suspended surfa
e homeomorphisms and those aris-ing as 
losed orbits in 
ows on three-manifolds: this text fo
uses on the lattersituation. The forth
oming book by P. Boyland and T. Hall [31℄ deals with theformer | there is a great deal of beautiful work being done in this area: Nielsentheory and \braid types" for surfa
e automorphisms [30, 29℄. In addition, knottheory interse
ts with dynami
s in examining problems of integrable Hamilto-nian systems [50℄, the existen
e of minimal 
ows on three-manifolds [79℄ and
onta
t geometry [45℄. Finally, analogues of knotting and linking for nonperi-odi
, minimal orbits [15, 116℄ and \asymptoti
" linking of orbits [64, 62℄ are veryex
iting, parti
ularly sin
e there are appli
ations to magnetohydrodynami
s [7℄and 
uid me
hani
s [129℄.



Chapter 1: PrerequisitesBefore introdu
ing the tools for examining knotted periodi
 orbits in 
ows, weprovide a 
on
ise review of relevant de�nitions, ideas, and results from the topo-logi
al theory of knots and links and the dynami
al theory of 
ows in threedimensions. This provides a language for des
ribing phenomena, as in: a period-doubling bifur
ation gives rise to a (2; n) 
abling.Our treatment of both of these (large) bodies of theory is ne
essarily brief; wewish merely to des
ribe the main ideas to be used in subsequent 
hapters. Severalgood referen
es exist for these growing �elds. Standard texts for the theory ofknots and links in
ludes the books by Rolfsen [154℄, Burde and Zies
hang [33℄,and Kau�man [101℄. In the theory of dynami
al systems, a wealth of goodbooks 
an be found, in
luding those by Robinson [153℄, Shub [162℄, Arnold [6℄,and Bowen [26℄. Devaney's book [41℄ is a good introdu
tory text on iteratedmappings. A more applied viewpoint 
an be found in the texts by Gu
kenheimerand Holmes [76℄ or Arrowsmith and Pla
e [9℄.1.1 The theory of knots and linksGiven a pie
e of string, one may tie it up into all sorts of 
ompli
ated knots.Nevertheless, as long as the ends are free, the mess may be untied 
ompletely(though in pra
ti
e this may be frustrating!). If one should join the two freeends of the string together, then (intuitively) a knotted loop remains knotted nomatter how one tries to undo it. This is the idea behind knot theory.1.1.1 Basi
 de�nitionsDe�nition 1.1.1 A knot is an embedding K : S1 ,! S3 of a 1-sphere into the3-sphere. A link L :`S1 ,! S3 is a disjoint, �nite 
olle
tion of knots.The three-sphere S3 is de�ned as the unit sphere in R4. The reader whois un
omfortable with S3 may repla
e it by R3 without loss, sin
e S3 
an be
onsidered as R3 with an additional \point at in�nity." The simplest knot isthe unknot, pi
tured in Figure 1.1(a). An unknot is any embedding of S1 in S3whose image is the boundary of an embedded dis
 D2 � S3. The next \sim-plest" knots1 are the trefoil knot and the �gure-eight knot depi
ted in Figure 1.1.We will usually 
onsider knots and links whi
h are oriented, as depi
ted by an1The �rst knot theorists tabulated knots a

ording to the minimal number of 
rossings in aplanar proje
tion. In these tables (see [154℄ or [33℄) the knots of Figure 1.1 are simplest: i.e.,they have the fewest possible number of 
rossings. Other notions of \simpli
ity" are of 
oursepossible [115℄. 5



6 
hapter 1. prerequisites
(b) (
)(a)Figure 1.1: (a) the unknot; (b) the trefoil knot; (
) the �gure-eight knot.arrow along the knot in a diagram. Given some regular (i.e., transverse) planarrepresentation of an oriented knot or link, ea
h 
rossing point has an indu
edorientation, given by the 
onvention of Figure 1.2. While our 
onvention is op-posite that whi
h is standard in knot theory, it has prevailed in the study ofknots in dynami
al systems [23, 24, 93, 88, 89, 70℄.

+ �Figure 1.2: Sign 
onvention for 
rossings.The fundamental problem of knot (link) theory is the following: when are twoknots (links) the same? In knot theory, the notion of \sameness" is 
onstru
tedto mat
h our intuition of deforming loops of knotted string.De�nition 1.1.2 Two knots K and ~K are ambient isotopi
 if there exists a
ontinuous one-parameter family ht of homeomorphisms of S3 su
h that h0 isthe identity map and h1 ÆK = ~K.Remark 1.1.3 The natural analogue of De�nition 1.1.2 holds for embeddingsof spa
es in S3 other than S1, e.g., surfa
es and solids. When working withknots and links in S3, it is 
ommon to refer to ambient isotopi
 knots as beingisotopi
, even though isotopy is te
hni
ally a weaker equivalen
e when workingwith non
ompa
t spa
es [33℄. We use the terms inter
hangeably to denote theequivalen
e of De�nition 1.1.2.Unless spe
i�ed expli
itly, the term \knot" may refer to either the a
tualembedding, or the image of the embedding, or the entire isotopy 
lass of embed-



1.1. the theory of knots and links 7dings. We will formulate most of the theory in terms of knots | generalizationsto links are automati
.Given De�nition 1.1.2, the fundamental problem of knot theory 
an be statedas follows:Problem 1.1.4 When are two knots isotopi
?One of the �rst triumphs of knot theory was a reformulation of Problem 1.1.4from a global-topologi
al problem to a lo
al-
ombinatorial one due to Reide-meister [149℄. Given a knot or link, 
onsider all its presentations; that is, planarproje
tions with over
rossings and under
rossings marked as in Figure 1.1. Anypresentation may always be 
hosen su
h that it is regular, having only transversedouble-points.Theorem 1.1.5 (Reidemeister [149℄) Two regular presentations 
orrespond toisotopi
 links if and only if the diagrams are related by isotopy (�xing the 
ross-ing points) and by a �nite sequen
e of the three Reidemeister moves, given inFigure 1.3.
R1 R2

R3Figure 1.3: The three Reidemeister moves: R1, R2, R3.Even with Theorem 1.1.5, Problem 1.1.4 is very diÆ
ult to solve; however,restri
ted versions of this problem have 
lean solutions.Consider the 
lass of torus knots: that is, knots whi
h lie on a torus T 2 =S1 � S1 � S3, where ea
h S1 is unknotted. These knots are des
ribed by theirwinding number in the meridional and longitudinal dire
tions. A type (m;n)torus knot (m and n relatively prime positive integers) is a simple 
losed 
urveon T 2 whi
h winds about the longitudinal dire
tion m times and about themeridional dire
tion n times [154, 33℄.
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hapter 1. prerequisitesExample 1.1.6 The trefoil knot of Figure 1.1(b) is a (2,3) torus knot.The family of torus knots is well-understood; in parti
ular, we have:Proposition 1.1.7 ([154, 33℄) Torus knots of type (m;n) and (m0; n0) are iso-topi
 if and only if m = m0 and n = n0 (or, equivalently, m = n0 and n = m0).1.1.2 New knots from oldOne possible method for building and 
lassifying knots is to begin with a simplefamily (e.g., the torus knots) and 
ombine its members in various ways. Giventwo knots, there are 
ertain 
onstru
tions for 
reating a new knot: we shall
onsider two su
h operations whi
h also have dynami
al interpretations.Conne
ted sumsThe �rst operation we 
onsider is a form of \multipli
ation" for knots 
alled,oddly enough, the sum.
Figure 1.4: The 
onne
ted sum of two knots.De�nition 1.1.8 Given two oriented knots K and ~K, their 
onne
ted sum,K# ~K, is formed by pla
ing ea
h in disjoint embedded 3-balls, B and ~B, su
hthat some 
losed ar
 of K ( ~K) lies on the boundary of B ( ~B resp.). Then, deletethe interior of ea
h ar
 and identify the boundaries of the ar
s via an orientationpreserving homeomorphism. See Figure 1.4 for an illustration.Remark 1.1.9 In De�nition 1.1.8, the 
hoi
e of balls and ar
s does not a�e
tthe 
onne
ted sum. This operation is 
ommutative and asso
iative, but is not agroup operation due to the la
k of inverses [154℄.If a knot 
an be de
omposed into the 
onne
ted sum of two or more nontrivialknots, it is said to be 
omposite, else it is prime. The torus knots, for example,are prime (a ni
e proof 
an be found in [33, pp. 92-93℄. A 
lassi
al theoremdue to S
hubert states that every knot has a unique prime fa
torization as the
onne
ted sum of prime knots. R. F. Williams and M. Sullivan have exploredthe presen
e of prime de
ompositions of periodi
 orbits of 
ows [195, 169℄.



1.1. the theory of knots and links 9Companions and satellitesIf one thinks of the 
onne
ted sum as a form of multipli
ation on the spa
e ofall knots (
omplete with prime fa
torization as with the integers), the operationof taking satellites is akin to taking powers. Let V � D2 � S1 be a solid toruswhi
h sits in S3 in the standard way. Let K be a knot essentially embedded inV , i.e., K is not 
ontained in any 3-ball B � V . Let ~K be an arbitrary knot andN ~K a tubular neighborhood of this knot in S3. A homeomorphism h : V ! N ~Kis said to be faithful if it takes the longitude of �V to a longitude of �N ~K whi
his homologi
ally trivial (it bounds a surfa
e) in the 
omplement S3 nN ~K .De�nition 1.1.10 The image of K under a faithful homeomorphism h is asatellite knot with 
ompanion ~K and pattern (K;V ): see Figure 1.5. IfK isotopesto a subset of �V � T 2, then K is a (p; q) torus knot and h(K) is said to be the(p; q) 
able of ~K.
~KV K h h(K)

h(V )Figure 1.5: A 
ompanion ( ~K) and a satellite (h(K)) knot.If we take ~K to be the unknot, a (p1; q1) 
able of ~K is a (p1; q1) torus knot. Ifwe build a (p2; q2) 
able of this torus knot, we obtain a new knot. By 
ontinuingthis pro
edure, with (pi; qi) 
ablings at ea
h step, one produ
es an iterated torusknot of type f(pi; qi)gni=1. Alternatively, we say that the set of knots generatedfrom the unknot by the operation of 
abling is 
alled the set of iterated torus
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hapter 1. prerequisitesknots. Following Fomenko and Nguyen [50℄, we will denote the set of knotsgenerated from the unknot by the operations of 
abling and 
onne
ted sum theset of generalized iterated torus knots. Both of these families of knots arisenaturally in a dynami
al 
ontext as shown in Appendix A.1.1.3 Braid theoryKnot and link theory studies embeddings of 
ir
les in S3. With some slightrestri
tions on the range of the embeddings, one 
an also embed ar
s in topo-logi
ally distin
t ways. Braid theory studies these phenomena (see [19, 81℄):De�nition 1.1.11 Given N a positive integer, a braid on N strands is a 
olle
-tion b = fbigN1 of N disjoint embeddings of the interval [0; 1℄ into Eu
lidean R3su
h that for ea
h i,1. bi(0) = (i; 0; 1);2. bi(1) = (�(i); 0; 0) for some permutation � ; and3. p3[bi(t)℄ is a monotone de
reasing fun
tion of t, where p3 denotes proje
tiononto the third 
oordinate.De�nition 1.1.12 Two braids, b and ~b, are isotopi
 if there exists an isotopyht from b to ~b as per De�nition 1.1.2 and if ht Æ b satis�es De�nition 1.1.11 forall t 2 [0; 1℄.The study of braids di�ers from the study of knots 
hie
y in that there is anatural group stru
ture on the set of braids. Restri
ting to the set of all braidson N strands, there is a group operation given by 
on
atenation. Given braidsb and ~b, one forms the braid sum b~b by appending the top of the ith strand of~b to the bottom of the ith strand of b: see Figure 1.6. In this way, one obtainsthe braid group on N strands, BN .

Figure 1.6: The sum operation on the braid group B3: �21�2 
on
atenated with��11 �2 equals �21�2��11 �2.



1.1. the theory of knots and links 11The standard generators for BN are denoted f�i : i = 1:::(N � 1)g and aregiven geometri
ally as the 
rossing of the ith strand over the (i + 1)st strand,as depi
ted in Figure 1.7. The presentation for BN under these generators wasgiven by Artin [10℄ to be the following:BN = ��1; �2; : : : ; �N�1 : �i�j = �j�i ; ji� jj > 1�i�i+1�i = �i+1�i�i+1 ; i < N � 1 � : (1.1)The relations for this presentation are illustrated in Figure 1.8.
�1 ��13Figure 1.7: Examples of generators for the braid group B4.

(a) (b)Figure 1.8: Relations for the braid group BN : (a) �i�j = �j�i for ji � jj > 1;(b) �i�i+1�i = �i+1�i�i+1 for i < N � 1.A relationship between braid theory and link theory is established by a simpleoperation on braids known as 
losure. Given a braid b, one forms a 
losed braid, b,by 
onne
ting the top and the bottom of ea
h strand of b in the obvious fashion:see Figure 1.9. The question of the extent to whi
h 
losed braids represent knotsand links was answered by Alexander [3℄:
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(b)(a) (
)Figure 1.9: (a) the braid �21�2; (b) its 
losure; (
) this is isotopi
 (via the �rstReidemeister move) to the Hopf link.Theorem 1.1.13 (Alexander [3℄) Any link L is isotopi
 to a 
losed braid onsome number of strands.To understand the proof of Theorem 1.1.13, the reader is en
ouraged to isotopea 
losed pie
e of string into a 
losed braid: 
hoose a provisional braid axis, aboutwhi
h the strands should revolve, and then try to maneuver the strands into a
losed braid. One naturally uses 
ertain \moves" whi
h are detailed in the proof(see [33, 19℄.We will make use of 
losed braids in Chapter 3 as a way to build knots andlinks, thanks to Theorem 1.1.13.Certain 
lasses of braids and 
losed braids will be prevalent in our treatmentof knots and links. A braid b 2 Bn will be 
alled positive if b, as a word inthe generators f�ig, 
ontains either no inverses or all inverses, i.e., either all
rossings in the braid are positive, in the sign 
onvention of Figure 1.2, or allare negative.2 A link L will be 
alled positive if L has a representation as the
losure of a positive braid.Remark 1.1.14 There exist knots with diagrams 
ontaining only positive 
ross-ings, but whi
h are not positive braids [182℄. The proof is nontrivial, and usesthe Alexander-Conway polynomial | a link invariant.1.1.4 Numeri
al invariantsThe equivalen
e problem (Problem 1.1.4) for knots and links is extremely diÆ
ultand has not yet been solved in a 
omputationally reasonable manner. However,2The term positive is used in both 
ases, either all positive 
rossings or all negative 
rossings.We �nd this 
onfusing and would prefer the term uniform; however, we yield to the 
ommonpra
ti
e in the remainder of this work.



1.1. the theory of knots and links 13many advan
es have been made through the use of algebrai
 invariants (see[101, 99, 20, 21, 94, 59℄ for examples). Here we merely des
ribe some simpler,
lassi
al, numeri
al invariants, whi
h will suÆ
e for out purposes.A numeri
al invariant is a well-de�ned fun
tion from link equivalen
e 
lassesto the integers. For example, the fun
tion whi
h maps a link L to the numberof its 
omponents �(L) is obviously invariant under isotopy, and hen
e de�nesa numeri
al invariant. However, this invariant has rather poor eyesight, sin
e itdoes not distinguish di�erent n-
omponent links.Consider a link L of two 
omponents,K and ~K. There is a well-de�ned notionof how \entwined" K and ~K are, en
oded in the linking number, `k(K; ~K) 2 Z.There are numerous ways to de�ne linking number [154℄, the simplest of whi
hinvolves a presentation of the link (re
all Theorem 1.1.5). For an oriented link,one 
an label ea
h 
rossing of a regular link presentation with an integer �1, asper the 
onvention of Figure 1.2.De�nition 1.1.15 Given two knots K and ~K, the linking number, `k(K; ~K), isgiven as half the sum of the signs over all 
rossings of K with ~K,`k(K; ~K) = 12 XK\ ~K �i; (1.2)where �i = �1 is the sign of the ith 
rossing and K \ ~K denotes the 
rossings ofK and ~K in some regular presentation.Lemma 1.1.16 Linking number is a link isotopy invariant.Proof: By Theorem 1.1.5, isotopy is generated by the Reidemeister moves ofFigure 1.3. It is easy to verify that linking number does not 
hange under theselo
al moves. 2The linking number `k(K; ~K) is related to the intuitive notion of linking.For example, de�ne a separable link to be one for whi
h there exists a smoothembedded 2-sphere S2 in S3 whi
h separates one (or more) 
omponent(s) of Lfrom the remainder of L. Any two separated 
omponents of a link are said tobe unlinked, and, indeed, their linking number must be zero, sin
e there existsa presentation for the link in whi
h the 
omponents do not 
ross at all. Wenote, however, that it does not follow that two knots with linking number zeroare ne
essarily separated: see the Whitehead link of Figure 2.16 for a 
lassi
alexample.One of the most important numeri
al invariants is the genus of a link. Re
allthat 
losed orientable surfa
es are 
lassi�ed by genus, or the number of handles ina handlebody de
omposition. Similarly, the genus of any surfa
e with boundaryis de�ned as the genus of the surfa
e obtained by abstra
tly gluing in a dis
along ea
h boundary 
omponent.De�nition 1.1.17 Given a link L, the genus, g(L), is de�ned as the minimumgenus over all orientable surfa
es S whi
h span L: that is, �S = L, where �S
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e of minimal genus is known as aSeifert surfa
e.Genus is by de�nition an invariant. Sin
e by de�nition a knot in S3 bounds adisk if and only if it is the unknot, then among knots, only the unknot may havegenus zero.There are numerous formulae available for 
omputing genera of links. Wein
lude one, due to Birman and Williams [23℄, following work of Stallings [167℄,whi
h will be parti
ularly useful in later 
hapters.Theorem 1.1.18 (Birman and Williams [24℄) Let L be a non-separable link of� 
omponents, presented as a 
losed positive braid on N strands, with 
 
rossings.Then g(L), the genus of L, is given asg(L) = 
�N � �2 + 1: (1.3)Example 1.1.19 In Figure 1.10(a), we show the trefoil knot along with a span-ning surfa
e. An Euler number 
al
ulation reveals that the surfa
e is a pun
turedtorus whose genus is one. By using Equation (1.3) on the (positive) braid repre-sentation in Figure 1.10(b), we get � = 1, 
 = +3; and N = 2; hen
e, the genusis one, and the surfa
e of part (a) is a
tually the Seifert surfa
e. This provesthat the trefoil is indeed knotted.

(a) (b)Figure 1.10: (a) A spanning surfa
e for the trefoil knot; (b) a positive braidpresentationExample 1.1.20 We may extend the idea of Example 1.1.19 to 
ompute ageneral formula for the genus of a torus knot. For K a (m;n) torus knot withm > n, we present a presentation of K as a positive braid in Figure 1.11:there are m strands on a 
ylinder (the logitudinal dire
tion), n of whi
h twist



1.1. the theory of knots and links 15around the ba
k (the meridional dire
tion). The 
losure of this braid is K. Itis an exer
ise for the reader to 
ount the 
rossings in this illustration and, usingEquation (1.3), 
ompute the genus of K to be:g(K) = (m� 1)(n� 1)2 : (1.4)

n m� nFigure 1.11: The (m;n) torus knot as a positive braid on m strands.Exer
ise 1.1.21 The �gure-8 knot has genus one and braid word �1��12 �1��12 .Show that it 
annot be presented as a positive braid. Hint: use indu
tion on thenumber of strands.Solution: Clearly, one or two strands will not suÆ
e. For three strands, theremust be pre
isely four 
rossings to ensure genus one. Show that any positivebraid with four 
rossings is either a trefoil or a link with more than one 
ompo-nent. For N > 3 strands, 
 = N + 1, and, given a positive braid on N strandswith N + 1 
rossings, there must be one braid generator that is only used on
e.Thus, by \
ipping" as in the �rst Reidemeister move, one 
an redu
e the num-ber of strands while retaining positivity, and thus obtain a 
ounter example onN � 1 strands. 2The 
ondition of having a positive 
losed braid is 
ru
ial to Theorem 1.1.18.For non-positive (or mixed) braids, there exists an extension of Theorem 1.1.18due to Bennequin [17℄, who derived a lower bound for genera of 
losed braidsgiven the same data as in Theorem 1.1.18:33The upper bound follows from dire
t 
onstru
tion.
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hapter 1. prerequisitesTheorem 1.1.22 (Bennequin [17℄) Let L be a nonseparable link of � 
ompo-nents, presented as a 
losed braid on N strands, with 
+ (
�) 
rossings in thepositive (negative) sense. Then g(L), the genus of L, is bounded as follows:j
+ � 
�j �N � �2 + 1 � g(L) � j
+ + 
�j �N � �2 + 1: (1.5)There are numerous other 
lassi
al numeri
al invariants for knots and links:we mention one last example for future referen
e.De�nition 1.1.23 Given a link L, the braid index of L, bi(L), is de�ned as theminimum number of strands over all 
losed braid representations of L.Again, this is an invariant by de�nition. Unfortunately, there does not exist ananalogue of Equation (1.3) for 
al
ulating braid index. Nevertheless, we will usethis invariant in Chapter 4.This brief treatment of knot and link theory does not even begin to re
ountthe major developments, espe
ially in the areas of higher invariants (maps fromlink isotopy 
lasses to algebrai
 obje
ts with more stru
ture than Z). Greatstrides have been made in dis
overing 
omputable multi-variable polynomialinvariants whi
h have ex
ellent resolution [59℄.Equally as ex
iting are the insightsgained through the [
ontinuing℄ development of �nite-type, or Vasiliev invariants[21, 22, 183℄. Our (modest) goal in this se
tion has been merely to a
quaintthe unfamiliar reader with this beautiful subje
t. For a deeper understanding,the \
lassi
al" theory of knots and links is well-
overed in [154, 33℄. Newerperspe
tives 
an be found in [21℄ and the referen
es therein. Braid theory is
overed in [19℄, with more re
ent progress reported in [20℄.1.2 The theory of dynami
al systemsTopology is the study of 
ontinuous maps between topologi
al spa
es: f : X !Y . In the 
ase where f : X ! X , one is easily persuaded to 
onsider iteratedpoints or orbits of f . Dynami
s seeks to understand asymptoti
 properties oforbits, be they orbits of maps (Z-a
tions) or of 
ows (R-a
tions). In the 
ase of
ows on 3-manifolds, we will 
onsider the topologi
al properties of 
losed orbitsas knots and links. But in order to pro
eed, we will need a 
ertain amount ofterminology and theory for both maps and 
ows.1.2.1 Basi
 de�nitionsDis
rete dynami
sAlthough dynami
al systems originated in questions about 
ontinuous-time dy-nami
s (in 
elestial me
hani
s; see, for example, the histori
al a

ount in [43℄),mu
h of the theory was developed �rst for maps, as it is somewhat simpler inthis 
ase. Thus, in this se
tion, we assume f : M ! M is a di�eomorphism ofan n-manifold M . The orbit, o(x), of a point x 2 M is de�ned as the set ofiterates ffk(x) : k 2 Zg.
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al systems 17Remark 1.2.1 Although we state the results for di�eomorphisms, mu
h of thetheory goes through for smooth noninvertible maps, for whi
h one works withthe orbits ffk(x) : k 2 Ng. The 
ase of one-dimensional noninvertible mapswill be of parti
ular 
on
ern in Se
tion 1.2.3, and subsequently in the study ofsemi
ows on templates.There are two primary problems asso
iated to the dynami
s of maps. The �rstis the equivalen
e problem (
f. Problem 1.1.4):De�nition 1.2.2 Two di�eomorphisms f : M ! M and ~f : N ! N are
onjugate if there exists a homeomorphism h : M ! N su
h that the followingdiagram 
ommutes: M f�! Mh # # hN ~f�! N (1.6)Problem 1.2.3 When are two di�eomorphisms 
onjugate?The se
ond prin
ipal problem of dynami
s 
on
erns stability: when are all\nearby" maps equivalent?De�nition 1.2.4 A di�eomorphisms f : M ! M is stru
turally stable if alldi�eomorphisms in a suÆ
iently small neighborhood of f in C1(M) are 
onjugateto f .Problem 1.2.5 When is a map stru
turally stable?Problems 1.2.3 and 1.2.5 are relevant, not only to the study of maps and 
ows(to be dis
ussed below), but also to the physi
al pro
esses that are frequentlymodeled by su
h systems. They are large problems, whose study has spawned anumber of important results and perspe
tives.We begin by breaking the problem down. An invariant set of f is a subset� � M su
h that f(�) = �. An equilibrium, or �xed point for f is a one-pointinvariant set. Understanding of the behavior on an invariant set � is greatlyfa
ilitated if the a
tion of f on � 
an be de
omposed into uniformly expandingand 
ontra
ting pie
es. This is the kernel of the notion of hyperboli
ity.De�nition 1.2.6 An invariant set � � M for a map f : M ! M is hyperboli
if there exists a 
ontinuous f -invariant splitting of the tangent bundle TM� intostable and unstable bundles Es� �Eu� withkDfn(v)k � C��nkvk 8 v 2 Es�; 8 n > 0;kDf�n(v)k � C��nkvk 8 v 2 Eu�; 8 n > 0; (1.7)for some �xed C > 0; � > 1.If f is hyperboli
 on all of M , we say that f is Anosov. Given a hyperboli
stru
ture on an invariant set, the dynami
s and stability of orbits on that pie
eare well-understood, as we now des
ribe.
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hapter 1. prerequisitesExample 1.2.7 (the toral Anosov map) Consider the linear map f : R2 !R2 given by f : � xy � 7! � 2 11 1 �� xy � = � 2x+ yx+ y � : (1.8)The point (0; 0) is an equilibrium point whi
h is hyperboli
 sin
e Df a
ts onthe tangent plane with the same linear map, and this map has eigenvalues andeigenve
tors �u;s = 32 � 52p2 ; vu;s = � 112 � 12p5 � : (1.9)Thus, the map f has expanding (unstable) and 
ontra
ting (stable) bundles, Euand Es, along the span of ea
h eigenve
tor. Noti
e that the map f preserves theinteger latti
e; hen
e, we may 
onsider f as a map on R2=Z2, i.e., the torus T 2.Sin
e f has determinant 1, the indu
ed map on T 2 is invertible. While the a
tionof f on R2 is rather bland, its a
tion on T 2 is quite interesting: the stable andunstable dire
tions (Es and Eu) have irrational slopes, so these proje
t down toinvariant manifolds on T 2 whi
h wind about the torus densely: see Figure 1.12.Furthermore, the periodi
 points of f on T 2 are dense, sin
e any pair of rationalnumbers with the same denominator gives the 
oordinates of a periodi
 point.
f

Figure 1.12: The a
tion of the map f on T 2.Remark 1.2.8 The map of Example 1.2.7 is hyperboli
 on all of T 2, hen
e itis Anosov. We will return to this toral Anosov map in x2.3.4.Noti
e in Example 1.2.7 that the stable and unstable bundles in the tangentspa
e are mimi
ked in the base spa
e by invariant manifolds (the proje
tion ofEs and Eu) on whi
h the map is uniformly 
ontra
tive or expansive. For a mapon M with a hyperboli
 stru
ture on some invariant set �, the splitting of the
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al systems 19tangent bundle TM� into invariant stable and unstable bundles proje
ts downto give invariant stable and unstable manifolds in M . This is the 
ontent of oneof the key results of this �eld: the Stable Manifold Theorem.4Theorem 1.2.9 (The Stable Manifold Theorem: Hirs
h, Pugh, and Shub[84℄) Given a di�eomorphism f :M !M with a hyperboli
 invariant set �, forea
h x 2 �, the setsW s(x) = fy 2M : limn!1 kfn(y)� fn(x)k = 0g ;W u(x) = fy 2M : limn!�1 kfn(y)� fn(x)k = 0g ; (1.10)are smooth, inje
tive immersions of the bundles Esx and Eux respe
tively. Inaddition, W s(x) and W u(x) are tangent to the bundles at x: T (W s(x))x = Esxand T (W u(x))x = Esx. The sets W s(x) and W u(x) are known as the stable andunstable manifolds of x.Remark 1.2.10 The notion of lo
al stable and unstable manifolds is also useful.Given f as in Theorem 1.2.9, the lo
al stable and unstable manifolds are de�nedas: W slo
(x) = fy 2M : limn!1 kfn(y)� fn(x)k = 0and kfn(y)� fn(x)k < � 8n � 0g ;W ulo
(x) = fy 2M : limn!�1 kfn(y)� fn(x)k = 0and kfn(y)� fn(x)k < � 8n � 0g ; (1.11)for � of \appropriately" small size.5 Theorem 1.2.9 then states that W slo
(x) andW ulo
(x) are tangent to Esx and Eux .Theorem 1.2.9 is a very strong result, whi
h we will rely upon frequentlyto des
ribe the dynami
s on a hyperboli
 invariant set. The real issue thenis as
ertaining the smallest invariant subset of M whi
h 
ontains \all" of theessential dynami
s of the 
ow, and then 
onsidering systems in whi
h this pie
eis hyperboli
. Through work of Smale, Shub, and others [165, 162℄, we knowthis essential pie
e to be the 
hain-re
urrent set.De�nition 1.2.11 Given a map f :M !M , a point x 2M is 
hain-re
urrentfor f if, for any � > 0, there exists a sequen
e of points fx = x1; x2; : : : ; xn�1; xn =xg su
h that kf(xi) � xi+1k < � for all 1 � i � n� 1. The 
hain-re
urrent set,R(f), is the set of all 
hain-re
urrent points on M .Remark 1.2.12 The 
hain-re
urrent set R(f) is 
losed and invariant.When one has a hyperboli
 
hain-re
urrent set, there is a sort of prime de
om-position theorem for the asso
iated dynami
s:4The Stable Manifold theorem was proved in stages, by several authors, starting with the
ases of � a �xed point or periodi
 orbit. Theorem 1.2.9 is a rather general statement.5There is some ambiguity about the size of � { an appropriate size is usually 
lear from the
ontext.



20 
hapter 1. prerequisitesTheorem 1.2.13 (Smale [165℄) Given a di�eomorphism f : M ! M havinga hyperboli
 
hain-re
urrent set, R(f) is the union of disjoint basi
 sets, Bi,i = 1; 2; : : : ; N . Ea
h Bi is 
losed, invariant, and 
ontains a dense orbit. Theperiodi
 orbit set of ea
h Bi is dense within Bi.In later 
hapters, we will often deal with systems whi
h have hyperboli

hain-re
urrent sets of various types. One more 
ondition is often required: amap is said to satisfy the strong transversality 
ondition if, for all x; y 2 R(f), thestable and unstable manifolds,W s(x) andW u(y), are transverse. This 
onditionis important in the de�nition of Morse-Smale and Smale di�eomorphisms. ASmale di�eomorphism is one whi
h has a zero-dimensional hyperboli
 
hain-re
urrent set satisfying the strong transversality 
ondition, while a Morse-Smaledi�eomorphism is a Smale di�eomorphism for whi
h the 
hain-re
urrent set is�nite.Working with hyperboli
 
hain-re
urrent sets and transversality has permit-ted a partial solution of the stability problem (Problem 1.2.5):Theorem 1.2.14 (Robbin [150℄, Robinson [151℄) Any di�eomorphism f :M !M having a hyperboli
 
hain-re
urrent set and satisfying the transversality 
on-dition, is stru
turally stable.Continuous dynami
sA map 
an be 
onsidered as a Z-a
tion on M . A 
ontinuous analogue to a mapis an R-a
tion, or a 
ow.De�nition 1.2.15 A 
ow on a manifoldM is a 
ontinuous map � : R�M !Msatisfying the following 
onditions:1. �t � �(t;�) :M !M is a homeomorphism of M for all t;2. �0 = idM , that is, �0(x) = x for all x 2M ;3. �t(�s(x)) = �t+s(x) for all s; t 2 R.While 
ows and maps are fundamentally di�erent obje
ts, in 
ertain in-stan
es they 
an be related. Given a map f : M ! M , one 
an de�ne thesuspension 
ow of f to be the quotient spa
e of M � R with the trivial 
ow�t(x; s) = (x; s + t) via identifying (x; s) with (f(x); s + 1). The 
ow �t passesto a suspension 
ow, ~�t, a
ting on the mapping torus, ~M = M � R=(x; s) �(f(x); s + 1). In the 
ase where f is isotopi
 to the identity map, ~M is homeo-morphi
 to M � S1, hen
e the name.Conversely, given a 
ow  t on a 
losed manifold S, we say that S has alo
al 
ross se
tion (or Poin
ar�e se
tion) if there exists a 
losed 
odimension-onesubmanifold � � S whi
h transversely interse
ts the 
ow at every point of �. Inthe 
ase where some subset U � � 
onsists of orbits whi
h return to � in �nitetime, there is a well-de�ned return map (or Poin
ar�e map) r : U ! � whi
hassigns to a point p 2 U the image  T (p)(p), where T (p), the return time, is thesmallest t > 0 su
h that  t(p) 2 �. In the 
ase where � interse
ts all 
ow lines
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al systems 21of �t, we say that � is a global 
ross se
tion. Clearly, taking the (appropriate)Poin
ar�e se
tion is the inverse of suspending a map. The study of iteratedmappings assumed its 
entral importan
e in dynami
s after Poin
ar�e developedthe te
hnique of 
ross-se
tions and return maps to study periodi
 orbits in 
owsgenerated by ordinary di�erential equations: examples appear throughout theremainer of this text, most notably in Chapter 4.When passing to 
ows, many of the de�nitions of x1.2.1 
arry over with theobvious modi�
ations: e.g., invariant sets, periodi
 orbits, et
. A few de�nitionsrequire additional explanation:De�nition 1.2.16 An invariant set � for a 
ow �t on M is hyperboli
 if thereexists a 
ontinuous �t-invariant splitting of the tangent bundle TM� into Es� �Eu� �E
� with kD�t(v)k � Ce��tkvk 8 v 2 Es�; 8t > 0;kD��t(v)k � Ce��tkvk 8 v 2 Eu�; 8t > 0; (1.12)d�tdt ����t=0(x) spans E
x 8x 2 �;for some �xed C > 0; � > 1. The one-dimensional \
enter" dire
tion E
x istangent to the orbit itself at ea
h point.De�nition 1.2.17 Let X � � be a subset of a hyperboli
 invariant set of a
ow �t on M . Then the stable and unstable manifolds of X in M are given byW s(X) = fy 2M : limt!1 k�t(X)� �t(y)k = 0g ;W u(X) = fy 2M : limt!�1 k�t(X)� �t(y)k = 0g : (1.13)The lo
al stable and unstable manifolds of a set X are given by:W slo
(X) = fy 2M : limt!1 k�t(y)� �t(X)k = 0and k�t(y)� �t(X)k < � 8t � 0g ;W ulo
(X) = fy 2M : limt!�1 k�t(y)� �t(X)k = 0and k�t(y)� �t(X)k < � 8t � 0g ; (1.14)For � an \appropriately" small positive number.Remark 1.2.18 Given 
 a periodi
 orbit for a 
ow �t, the lo
al stable andunstable manifolds 
an 
arry additional information. Consider the 
ase where,say, W slo
(
) has dimension two: then, the lo
al stable manifold is a ribbon
ontaining 
 as a 
ore. This ribbon is homeomorphi
 to either an annulus or aM�obius band, yielding an untwisted or twisted periodi
 orbit respe
tively. Weuse su
h information in x3.1, x4.1, and x5.3.De�nition 1.2.19 Given a 
ow �t onM , a point x 2M is 
hain-re
urrent for �if, for any � > 0, there exists a sequen
e of points fx = x1; x2; : : : ; xn�1; xn = xgand real numbers ft1; t2; : : : ; tn�1g su
h that ti > 1 and k�ti(xi)�xi+1k < � forall 1 � i � n� 1. The 
hain-re
urrent set, R(�), is the set of all 
hain-re
urrentpoints on M .
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hapter 1. prerequisitesThe Stable Manifold Theorem for 
ows is entirely analogous to Theorem1.2.9, and Theorem 1.2.13 holds as stated for 
ows with hyperboli
 
hain-re
urrent sets. The de�nitions of Morse-Smale and Smale 
ows follows withone modi�
ation: their 
hain-re
urrent sets are one-dimensional, sin
e these are
ows. Hen
e, a Morse-Smale 
ow is a 
ow whi
h has a �nite number of hyper-boli
 �xed points and periodi
 orbits, all of whose stable and unstable manifoldsinterse
t transversally: see Appendix A.1.2.2 Symboli
 dynami
sOne of the most remarkable { and fortunate { properties of 
ompli
ated hyper-boli
 invariant sets is the des
ription they admit via symboli
 dynami
s. Thistheory has a long history, beginning with its use by Hadamard in des
ribing
losed geodesi
s [80℄, and 
ontinuing in the work of Morse [133, 134℄.Shifts and subshiftsLet � = fx1; x2; : : : ; xNg be an alphabet of N letters. Denote by �N the spa
eof bi-in�nite symbol sequen
es in �:�N = f: : : a�2a�1:a0a1a2 : : : : ai 2 �; 8i 2 Zg = �Z: (1.15)Points in �N will be 
alled itineraries. The spa
e �N is given the produ
ttopology and 
an be endowed with a metri
 as follows. If a = (ai)1i=�1 andb = (bi)1i=�1 are itineraries, then the distan
e d(a;b) isd(a;b) = 1Xn=�1 Æ(n)2jnj ; where Æ(n) = � 0 : an = bn1 : an 6= bn : (1.16)Under this metri
, points in �N are 
lose when their symbol sequen
es agree onlarge blo
ks forwards and ba
kwards from the \midpoint" a0.De�ne the shift map � : �N ! �N as follows:�(: : : a�2a�1:a0a1a2 : : :) = : : : a�1a0:a1a2a3 : : : : (1.17)Under the produ
t topology, the shift map � is a homeomorphism. The dynam-i
al system (�N ; �) is 
alled the full N-shift.GivenA anN byN matrix of zeros and ones, an itinerary a = : : : a�1:a0a1 : : :is admissible with respe
t toA at i if, for aiai+1 = xjxk (where j; k 2 f1; 2; :::; Ng),A(j; k) = 1. Any itinerary a whi
h is admissible with respe
t to A at all i is
alled admissible.De�nition 1.2.20 Given A an N by N matrix in zeros and ones, the subshift of�nite type asso
iated with A is the dynami
al system (�A; �), where �A � �N isthe set of admissible itineraries and � is the shift map. The matrix A is known asthe transition matrix for �A, sin
e it spe
i�es those transitions between symbolsthat are possible within a sequen
e.
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al systems 23Example 1.2.21 Consider the subshift of �nite type asso
iated with the tran-sition matrix A = 24 1 1 01 1 11 1 1 35 : (1.18)Then the system (�A; �) 
onsists of all bi-in�nite sequen
es in fx1; x2; x3g not
ontaining x1x3 as a subword.Remark 1.2.22 An alternative to De�nition 1.2.20 
omes from graph theory.Let � be a dire
ted (oriented) �nite graph with vertex set v = fvig and edgeset e = fejg, su
h that there exists at most one edge 
onne
ting any orderedvertex pair in v� v. Then the spa
e of bi-in�nite, 
ontinuous, dire
ted paths in� 
an be put in bije
tive 
orresponden
e with all bi-in�nite symbol sequen
es infvig admissible with respe
t to a transition matrix Av , where Av(i; j) = 1 if andonly if there is a 
ontinuous path from vi to vj . Alternatively, dire
ted paths in� 
an also be represented by symbol sequen
es in the edge labels fejg, wherethe transition matrix Ae satis�es Ae(i; j) = 1 if and only if there the tip of theedge ei meets the tail of the edge ej . In general, these matri
es, Av and Ae,will di�er. Thus, sin
e the spa
e of paths on � is the same, we have shown theexisten
e of di�erent subshifts whi
h are nevertheless 
onjugate: see Figure 1.13.
v1 v2 e1 e2Figure 1.13: The vertex graph (left) and the edge graph (right) asso
iated tothe 2� 2 matrix A, where A(i; j) = 1 for all i; j.Symboli
 dynami
s and subshifts of �nite type are very 
on
rete | one 
an
ombinatorially determine all the periodi
 orbits, �xed points, et
. symboli
ally.On the other hand, given any bi-in�nite \random" sequen
e of ones and twos,there is an orbit in the full 2-shift whose dynami
s pre
isely follows this sequen
eof x1's and x2's; hen
e, these systems 
an en
ode 
ompli
ated dynami
s.Our interest in symboli
 dynami
s lies in the fa
t that they 
apture thedynami
s of hyperboli
 invariant sets of maps.Theorem 1.2.23 (Bowen [26℄) Let f : M ! M be a di�eomorphism with ahyperboli
 
hain-re
urrent set R and � � R a basi
 set. Then, there exists asemi
onjuga
y h : �A ! � between � and a subshift of �nite type. That is, his a 
ontinuous surje
tion with h� = fh. If � is zero-dimensional then h is ahomeomorphism; i.e., h is a 
onjuga
y.
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hapter 1. prerequisitesFor details of the proof of Theorem 1.2.23, see Bowen's work [26℄, or the refor-mulations in [53, 162℄. The essential tools for Theorem 1.2.23 are re
tangles andMarkov partitions, both obje
ts whi
h will be of great use to us in Chapter 2.De�nition 1.2.24 For f a di�eomorphism and � a hyperboli
 basi
 set, a 
losed(not-ne
essarily 
onne
ted) set R � � is a re
tangle provided:1. W slo
(x) \W ulo
(y) 2 R is a single point for all x; y 2 R; and2. int(R) is dense in R.De�nition 1.2.25 Let f be a di�eomorphism, � a hyperboli
 basi
 set for f ,and 
 a �nite 
olle
tion of re
tangles Ri. Let W s(x;Ri) � W slo
(x) \ Ri andW u(x;Ri) �W ulo
(x) \ Ri. Then 
 is a Markov partition for f if:1. � = [iRi;2. int(Ri) \ int(Rj) = ;;3. for x 2 int(Ri) and f(x) 2 int(Rj),f(W s(x;Ri)) �W s(f(x); Rj)); W u(f(x); Rj) � f(W u(x;Ri));4. for x 2 int(Ri) \ f�1(int(Rj)),int(Rj) \ f [W u(x; int(Ri))℄ = W u(f(x); int(Rj ));int(Ri) \ f [int(W s(f(x); int(Rj)))℄ = W s(x; int(Ri)):Condition 4 is ex
luded in many de�nitions; however, any partition satisfyingthe �rst three 
an be re�ned to have re
tangles of arbitrarily small diameter,implying Condition 4 [153, Lemma 6.8℄.Remark 1.2.26 Although re
tangles are not ne
essarily 
onne
ted, or even lo-
ally 
onne
ted, they 
an usually be thought of as disjoint re
tangular simpli
es:see Example 1.2.28 below and the proof of Lemma 2.2.5. A Markov partitiongives rise to a subshift in the following manner: let fRigN1 be a Markov partitionfor a basi
 set � of f as above. De�ne the N �N matrix A byA(i; j) = � 1 : f(Ri) \ Rj 6= ;0 : f(Ri) \ Rj = ; : (1.19)Then, the 
ontent of Theorem 1.2.23 is that the subshift of �nite type (�A; �) issemi
onjugate to (�; f), and 
onjugate in the 
ase when � is zero-dimensional.Remark 1.2.27 There exists an analogue of Theorem 1.2.23 for non-invertiblemaps. Let �+A denote the spa
e of semi-in�nite symbol sequen
es admissiblewith respe
t to A. If we rede�ne the shift map as � : (a0a1a2 : : :) 7! (a1a2 : : :),then the system (�+A; �) is a one-sided subshift of �nite type. The analogueto Theorem 1.2.23 then holds for hyperboli
 noninvertible maps and one-sidedsubshifts.
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al systems 25Example 1.2.28 (Smale's horseshoe) Consider a map f : I � I ! R2 onthe square given as in Figure 1.14. The map a
ts linearly on the horizontalstrips labeled H1 and H2, stret
hing by a fa
tor �u > 2 in the verti
al dire
tionand 
ompressing by �s < 12 in the horizontal dire
tion, while bending the entiresquare into a \horseshoe."
f12 1

2
Figure 1.14: The Smale horseshoe map.Let � denote the set of points in I�I whi
h remain in I�I under all forwardsand ba
kwards iterates of f . This set is invariant and is 
ontained in H1 [H2.Be
ause of the linear a
tion on horizontal strips, the lo
al stable manifold of apoint x 2 � is a horizontal line segment passing through x. Similarly, the lo
alunstable manifold of x is a verti
al line segment through x. It follows that � isa 
losed hyperboli
 invariant set for f .It is left as an exer
ise for the reader to show that the interse
tion of � withthe (literal) re
tangles H1 and H2 provides a Markov partition for f j�. Sin
e� is the 
artesian produ
t of two Cantor sets in the interval, it follows that� is zero-dimensional and, via Theorem 1.2.23, has dynami
s 
onjugate to thesubshift of �nite type indu
ed by the Markov partition: in this 
ase, the full2-shift. By writing down bi-in�nite sequen
es of symbols, we 
an immediately
on
lude that there are, e.g., two �xed points, a 
ountable in�nity of periodi
orbits, an un
ountable number of nonperiodi
 orbits, and an orbit of f dense in�.Example 1.2.28 is fundamental to the study of 
ompli
ated dynami
s, sin
e it isperhaps the simplest example of a nontrivial hyperboli
 set. Moreover, it o

urswidely in dynami
al systems modeling physi
ally relevant pro
esses, in
ludingPoin
ar�e maps for periodi
ally for
ed os
illators (
f. [76℄ and x2.3.2 below).In subsequent 
hapters, we will 
onsider the suspension of the horseshoe mapf and regard the periodi
 orbits as knots. Symboli
 dynami
s will then giveus a language for des
ribing these knots. To the readers unfamiliar with thehorseshoe, we suggest that either (1) they 
onsult a good referen
e for more
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hapter 1. prerequisitesinformation (e.g.[153, 41, 76℄); and/or (2) they 
omplete the following exer
isesto strengthen understanding of this important example:Exer
ise 1.2.29 Draw a pi
ture of the se
ond iterate of f , as well as its inverse;then, prove that � is zero-dimensional.Exer
ise 1.2.30 Des
ribe the lo
al stable and unstable manifolds of an itineraryin �2 under �. Give an example of a dense orbit for (�2; �).Exer
ise 1.2.31 Generalize the horseshoe map to a map whi
h 
orresponds tothe subshift of �nite type given in Example 1.2.21.As an indi
ation of the fundamental nature of Example 1.2.28, as well asto prepare the way for future examples, we re
all the Poin
ar�e-Birkho�-Smalehomo
lini
 Theorem. This theorem 
on
erns the very important 
on
ept ofhomo
lini
 orbits, originally due to Poin
ar�e [146, Vol. 3℄.De�nition 1.2.32 Given a map f : M ! M (or, a 
ow �t on M) having ahyperboli
 �xed point p, p has a homo
lini
 orbit if the interse
tion of the stableand unstable manifolds of p is nonempty: i.e., W s(p) \ W u(p) 6= ;. In the
ase of a map, we distinguish between transverse homo
lini
 orbits, for whi
hTxW u(p) � TxW s(p) = TxM for all x 2 W s(p) \ W u(p), and nontransversehomo
lini
 orbits, for whi
h this 
ondition fails.Theorem 1.2.33 (The Poin
ar�e-Birkho�-Smale Homo
lini
 Theorem[146, 18, 164℄) Let f : R2 ! R2 be a di�eomorphism with p a �xed pointsupporting a transverse homo
lini
 orbit. Then, for some N > 0, fN 
ontains aSmale horseshoe in a neighborhood of the homo
lini
 orbit.Remark 1.2.34 By \
ontaining a horseshoe" we mean that there exists a 
om-pa
t invariant subset near the homo
lini
 orbit whi
h is 
onjugate to the mapof Example 1.2.28. Hen
e, from very general hypotheses one 
an apply symboli
dynami
s to des
ribe and understand 
ompli
ated dynami
s. This perspe
tivewill be of use in the remainder of this book as we seek to des
ribe and understandknotted periodi
 orbits in 
ows.Topologi
al entropyThe question arises whi
h shifts or subshifts are equivalent up to 
onjuga
y (
f.Remark 1.2.22). While this problem was 
ompletely solved by Williams [191℄,an earlier result gave rise to an easily 
omputable invariant known as topologi
alentropy. The original de�nition of topologi
al entropy for a map f a
ting on a
ompa
t manifoldM 
onsidered the growth rates of open 
overs ofM under thea
tion of f . We will use an alternate de�nition due to Bowen [26℄.De�nition 1.2.35 Given f :M !M a di�eomorphism with 
ompa
t invariantset �, an integer n > 0, and a real number � > 0, an (n; �)-separated set S � � isa set for whi
h any two distin
t points x and y in S satisfy d(fk(x); fk(y)) > �
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al systems 27for some 0 � k < n. De�ne s(n; �) to be the maximum 
ardinality of any(n; �)-separated subset of �. Then, the topologi
al entropy of f on � is given ash(f) = lim�!0 limn!1 sup log s(n; �)n : (1.20)De�nition 1.2.35 is by no means transparent. An (n; �)-separated set is a 
ol-le
tion of points whi
h avoid one another (up to �) within the initial segment ofthe orbit (up to n iterates). On a 
ompa
t manifold M , every su
h set must be�nite. The entropy is thus the limit of the growth rate (in n) of the maximalnumber of orbits whi
h separate, as we in
rease our sensitivity to separation(�! 0).Part of the diÆ
ulty in understanding De�nition 1.2.35 is in as
ertainingwhat topologi
al entropy measures. In short, a map with positive entropy has agreat deal of \a
tivity" | the number of orbits whi
h are separated under thea
tion of f grows at an exponential rate. This implies that both stret
hing (forseparation) and folding (for 
ompa
tness) a
tions are ne
essary for 
ompli
ateddynami
s, 
f. Example 1.2.28. Alternatively, a map whi
h has zero entropy (e.g.,an isometry) would indi
ate a relatively small degree of 
ompli
ated dynami
s.A rough generalization is that positive topologi
al entropy signals \
haoti
"dynami
s.Remark 1.2.36 Two maps on 
ompa
t spa
es whi
h are 
onjugate must havethe same entropy, sin
e the 
onjuga
y is a uniformly 
ontinuous homeomorphismwhi
h preserves s(n; �) after a 
hange of s
ale in �. Hen
e, topologi
al entropyis a dynami
al invariant. Topologi
al entropy for 
ows is less well-de�ned: if wede�ne the entropy of a 
ow to be the entropy of the time-one map, then we 
anat least distinguish zero-entropy from positive-entropy 
ows.Cal
ulating entropy is in general a diÆ
ult task: fortunately, the entropy of theshifts and subshifts of x1.2.2 are readily 
omputed.Theorem 1.2.37 Let �A denote the subshift of �nite type asso
iated with thematrix A. Then the entropy of the shift map � is the log of the spe
tral radiusof A.Theorem 1.2.37 relies upon the Perron-Frobenius Theorem for matri
es withpositive entries [143, 60℄. A ni
e proof of Theorem 1.2.37 
an be found in [153℄.Example 1.2.38 The entropy of the full 2-shift is log(2), sin
e the full 2-shifthas as transition matrix a 2�2 matrix with ones in ea
h entry. Thus by Remark1.2.36 we know that the Smale horseshoe map has entropy equal to log(2).In the Appendix, we will use entropy to 
hara
terize knots and links, partitioningthe set of links into zero-entropy and positive-entropy links.
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hapter 1. prerequisites1.2.3 Bifur
ations and one-dimensional mapsWe have thus far 
onsidered the 
ase in whi
h the dynami
al system (or its
hain-re
urrent set) is hyperboli
. Now suppose we have a family of systemsdependent upon a parameter � 2 Rn. By Theorem 1.2.14, as long as the systemis hyperboli
, varying the parameter has no qualitative e�e
t. However, if wespe
ify merely that the system have the appropriate hyperboli
 stru
ture for a
ertain �0, then varying the parameter � may alter it drasti
ally | �xed points,periodi
 orbits, and basi
 sets may appear or vanish in bifur
ations.We review the simplest types of bifur
ations in order to provide a languagewith whi
h to des
ribe the 
reation of knotted orbits in parametrized families ofthree-dimensional 
ows in Chapter 4. For more 
omplete expositions, see [39,76℄. The following three examples represent the simplest types of bifur
ationswhi
h 
an be embedded in one-parameter families of one-dimensional maps:Example 1.2.39 (saddle-node bifur
ation) Let f� : R1 ! R1 be an other-wise generi
 map whose derivative satis�es f 00(0) = 1: e.g., x 7! x + (� � x2).Then the bifur
ation at � = 0 , in whi
h two stable equilibria are 
reated, is
alled a saddle node bifur
ation. For � < 0 there are no �xed points for f . As� in
reases through zero, a pair of hyperboli
 �xed points of opposite stabilitybran
hes out from the origin.Example 1.2.40 (pit
hfork bifur
ation) Although the saddle-node bifur
a-tion is the generi
 one-parameter bifur
ation for f 00(0) = 1, other bifur
ationsare possible under spe
i�
 restri
tions on the 
lass of maps 
onsidered. For in-stan
e, assume that f : R1 ! R1 is generi
 in the 
lass of maps whi
h is invariantunder the symmetry transformation x 7! �x: e.g., x 7! x + (�x � x3). Then,by symmetry, the origin must be a �xed point for all �. In this 
ase, there is apit
hfork bifur
ation at � = 0. For � < 0, the origin is an isolated hyperboli
�xed point. As � in
reases through zero, the origin 
hanges stability and simul-taneously sheds two �xed points, ea
h a
quiring the stability type the origin hadfor � negative.Example 1.2.41 (period-doubling bifur
ation) Let f� : R1 ! R1 be ageneri
 map whose derivative satis�es f 00(0) = �1: e.g., x 7! �x � �x + x3.Then the bifur
ation at � = 0 is 
alled a period-doubling bifur
ation, sin
e aperiod two orbit is 
reated. For � < 0 there is an isolated hyperboli
 �xed pointat the origin. As � in
reases through zero, the origin 
hanges stability and aperiod two orbit bran
hes away from the origin.Remark 1.2.42 The three examples above may 
ome in di�erent 
avors: forexample, the signs of the nonlinear terms may di�er. Also, these examplesare not 
on�ned to bifur
ations of one-dimensional maps. Arbitrary maps 
anexhibit, e.g., a saddle-node bifur
ation. This theory involves the 
onstru
tion ofone-dimensional 
enter manifolds, whi
h 
apture the bifur
ating orbits. See, forexample, the introdu
tory texts [153, 76, 9, 34℄.
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al systems 29Exer
ise 1.2.43 Given the three bifur
ations of �xed points presented above,explain via Poin
ar�e maps what happens to a periodi
 orbit in a 
ow whi
hundergoes a saddle-node, pit
hfork, or period-doubling bifur
ation. Then, re-
onsider the statement at the beginning of this 
hapter, that a period-doubledorbit in a three-dimensional 
ow gives rise to a 2-
able of the knot.Examples 1.2.39 and 1.2.41 are 
odimension one bifur
ations: they o

urstably for generi
 one-parameter families of maps. (In the absen
e of symme-try, the pit
hfork bifur
ation of Example 1.2.40 is of 
odimension two, sin
e two
onditions, one on the eigenvalue and one on the quadrati
 term (that it van-ishes), must simultaneously be met.) There is a third important 
odimensionone bifur
ation:Example 1.2.44 (Hopf bifur
ation) The Hopf bifur
ation for a periodi
 or-bit involves a 
omplex 
onjugate pair of eigenvalues for the linearized Poin
ar�emap and thus 
an o

ur only for maps of dimension two or greater. The trun-
ated normal form, analogous to the one-dimensional versions above, is mostnaturally expressed in polar 
oordinates:� r� � F�7! � r(1 + �� r2)� + '+ br2 � ; (1.21)the linearized mapping in 
artesian form beingF� = (1 + �) � 
os' � sin'sin' 
os' � : (1.22)a matrix with eigenvalues �; � = (1 + �)e�i', whi
h rotates by the angle ' anddilates by the fa
tor 1 + �. It is easy to 
he
k that, for � < 0, (1.21) has anisolated hyperboli
 sink at the origin, from whi
h an attra
ting invariant 
ir
ler = p� bifur
ates as � in
reases through zero. On this 
ir
le, points are rigidlyrotated through the angle ' + b�. When this quantity is rational (mod 2�)the invariant 
ir
le is �lled with periodi
 points; when irrational, with dense,quasi-periodi
 orbits.As the orbits 
reated in a Hopf bifur
ation lie on the boundary of a tubularneighborhood of the periodi
 orbit (that is, a torus), any periodi
 orbits are
ables of the original knot: we return to this in Chapter 4.When working with families of one-dimensional maps, the symboli
 theory ofsubshifts in x1.2.2 
an be used e�e
tively to en
ode sequen
es of bifur
ations asa parameter is varied. To do so, we must spe
ify a 
oordinate system on symbolsequen
es indu
ed by the one-dimensional map. These 
oordinates foreshadowa similar 
onstru
t to be used for semi
ows on bran
hed two-manifolds havingone-dimensional return maps. This kneading theory will be used in lo
atingperiodi
 orbits and determining their topologi
al properties in later 
hapters.To introdu
e the ideas, 
onsider the two hyperboli
 (expanding) maps de�nedon I = [0; 1℄ � R of Figure 1.15. In both 
ases a Markov partition may be based
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(a) (b)Figure 1.15: One dimensional maps: (a) the doubling map, fD; (b) the tentmap, fT .on the intervals I1 = [0; 12 ℄ and I2 = [ 12 ; 1℄, ea
h of whi
h is stret
hed a
ross theentire interval I by the map. Labeling the intervals x1 and x2 and appealing toTheorem 1.2.23, we have a semi
onjuga
y6 between fD (resp. fT ) and a full shifton two symbols, although here it is the one-sided shift working on semi-in�nitesequen
es, sin
e one 
an only iterate the maps forwards (
f. Remark 1.2.27).Under these semi
onjuga
ies, a point p 2 I belonging to a periodi
 orbitof either map 
orresponds to a sequen
e formed of repeats of a �nite wordap = (a0a1 : : : aK�1), of length K equal to the (least) period, in whi
h thesymbol aj takes the value x1 (resp. x2) if f j(p) 2 I1 (resp. I2). The itineraryformed by repeating a word w will be denoted w1.To lo
ate points within an orbit, or points of distin
t orbits, we introdu
ethe natural \left to right" lexi
ographi
al ordering x1 � x2. Here the two mapsreveal a 
ru
ial di�eren
e. Sin
e fD is orientation-preserving (both bran
heshave positive slope), simple lexi
ographi
al ordering of the itineraries a1p and a1qwill 
orre
tly determine the relative positions of the points p; q 2 I . Essentiallyhere we are 
omparing binary expansions of p and q, with x1 and x2 playing theroles of 0 and 1.Example 1.2.45 Consider the points p = 13 and q = 37 , whose orbits under fDare f 13 ; 23 ; 13 ; 23 ; : : :g and f 37 ; 67 ; 57 ; 37 ; 67 ; 57 ; : : :g respe
tively. The asso
iated wordsare: a1p = fx1x2x1x2 : : :g and a1q = fx1x2x2x1x2x2 : : :g. a1p and a1q �rst di�erat the third symbol, and sin
e x1 � x2, we see that a1p � a1q , as required.Turning to the map fT , we note that orientation is reversed for points in I2.To 
ope with this, we 
ompare not simple itineraries, but invariant 
oordinates,de�ned as �(a) = �1�2 : : : �n : : :, where �i = ai if the x2-parity of a1a2 : : : ai�16Here, the map is a semi
onjuga
y be
ause points on the boundary I1 \ I2 = 12 admit twodistin
t symbol sequen
es x2 (x1)1 and x1 (x2)1 (
f. the ambiguity in de
imal representationof reals). The maps from fD or fT to the full shift are 
onjuga
ies when restri
ted to theperiodi
 orbit set. One 
an also get semi
onjuga
ies if the slope of the map is of absolute valueless than one: multiple orbits may share the same symbol sequen
e.
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al systems 31is even, else �i = âi, where x̂2 = x1 and vi
e versa. Thus � keeps tra
k of howmany visits to the orientation-reversing subinterval the orbit has made.Example 1.2.46 Again take two points, but now belonging to periodi
 orbitsof fT : p = 25 and q = 27 . The asso
iated words are again: a1p = (x1x2)1 anda1q = �x1x22�1, but the invariant 
oordinates are:� (x1x2)1 = �x1x22x21x2�1 ;� �x1x22�1 = �x1x2x21x2x1�1 :We now 
orre
tly have �(a1q )� �(a1p ).Thus, extending the de�nition of � appropriately for general multi-bran
hmaps to 
ount the number of visits to orientation-reversing subintervals, wehave:Proposition 1.2.47 (Milnor and Thurston [125℄) Let p and q be points on I
orresponding to words a1p and a1q respe
tively. Then p < q , �(a1p )� �(a1q ).We have des
ribed the theory for the spe
ial 
ases of pie
ewise linear maps,but it applies equally well to nonlinear maps; in fa
t one does not even need theslope to ex
eed 1 everywhere. If the slope does ex
eed one on ea
h bran
h (themap is hyperboli
 or expansive), and the subintervals Ij are pairwise disjoint,then the semi
onjuga
y referred to above be
omes a 
onjuga
y.We 
all a word a minimal if the invariant 
oordinate of w is minimal withrespe
t to � in the invariant 
oordinates of the shift equivalen
e 
lass, i.e.,�(a)��(�i(a));8i. In the kneading theory of one dimensional maps, the minimalword is also 
alled the itinerary of the orbit. We now brie
y review some ideasfrom this area; for details see [39℄.That portion of one-dimensional kneading theory with whi
h we will be 
on-
erned seeks to order points on the interval with respe
t to symbol sequen
es(as in Proposition 1.2.47) and also to expli
itly determine bifur
ation sequen
esfor unimodal maps of the type illustrated in Figure 1.16, the 
anoni
al exampleof whi
h is the quadrati
 family:f� : x 7! �� x2: (1.23)Upon in
reasing �, the nonwandering set of f� 
hanges from being empty for� < � 14 , to having a one-dimensional analogue of a hyperboli
 horseshoe for � >2. This sequen
e of bifur
ations involves numerous period-doubling and saddle-node bifur
ations in an order whi
h displays self-similarity: see [41, 198, 199℄.Note that, for � = 2, a homeomorphism on the interval [�2; 2℄ takes f� into fT[181℄, 
f. [76, x5.6℄.The range of the map f� is determined by the orbit of the 
riti
al point 
,whi
h essentially determines the dynami
s of the map. We assign to ea
h peri-odi
 orbit of f� a word whi
h allows us to order bifur
ations, mu
h as itineraries
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(e)(d)(
)(b)(a)Figure 1.16: Members of the quadrati
 family f�: (a) � < � 14 ; (b) � = � 14 ; (
)� 2 (� 14 ; 2); (d) � = 2; (e) � > 2.and invariant 
oordinates permit the ordering of points on the interval I . In-tuitively, this word, the kneading invariant �(a), is the itinerary of the 
riti
alpoint 
 for the �-value at whi
h a point on the orbit a 
rosses over 
. Thereare some te
hni
alities regarding whi
h orbits a
tually 
ontain points that 
ross
 and whether they 
an be given an asso
iated invariant. These details areunwieldy and largely unne
essary for our purposes: the diligent reader should
onsult [39, 41, 90℄.Given a word a = a1a2 : : : an (with n � 3) one 
an asso
iate su
h a sequen
egiven by �(a) = �(x1x2 (a1a2 : : : an�2
x2)1); (1.24)where 
 = x2 if the x2-parity of a1a2 : : : an�2 is even and 
 = x1 if it is odd.The two period one orbits have kneading invariant �(x1) = �(x2) = x11 and thesingle period two orbit has �(x1x2) = (x1x2)1.The important fa
t 
on
erning kneading invariants and bifur
ations of f� is:Proposition 1.2.48 (Milnor and Thurston [125℄) Let a1p and a1q be the mini-mal words for periodi
 orbits of f� and let �p; �q be the �-values at whi
h theseperiodi
 orbits are 
reated. Then, with � as before, �(ap)� �(aq)) �p < �q.Thus, for the quadrati
 map f�, we may 
ompletely 
hara
terise \whi
h 
omes�rst" in the orbit genealogy. As above, the theory works for a more general 
lassof unimodal maps than f�, the main requirement being that the maps have neg-ative S
hwarzian derivative [163, 39, 76℄, implying that, for ea
h �, there is atmost one stable periodi
 orbit.We have now sket
hed the requisite ba
kground material. In the 
haptersthat follow, we will demonstrate how ideas from knots and links and dynami
alsystems theory 
an be drawn together. In doing so, we will be able both toanswer questions in dynami
al systems and bifur
ation theory, and to dis
overnew phenomena in low-dimensional topology.



Chapter 2: TemplatesWe now pro
eed with our program to investigate the link of periodi
 orbits ina three-dimensional 
ow. In this 
hapter, we blend the two themes of Chapter1, the study of knots, and the study of hyperboli
 dynami
s, to 
reate a toolfor analyzing knotted orbits of hyperboli
 
ows: the template. This importanttool, whose origins lie within the work of R. F. Williams [192, 193℄, will be ourprimary instrument for examining periodi
 orbit links.In x2.1 we review the natural role of bran
hed one-manifolds as attra
tors,foreshadowing the 
on
ept of a template. In x2.2, we give a thorough treatmentof the Template Theorem of Birman and Williams [24℄ and then apply this the-orem in x2.3 to a variety of important three-dimensional 
ows. Finally, in x2.4,we 
onstru
t a set of symboli
 tools for des
ribing and manipulating templatesand the orbits that they 
arry.First, we 
onsider the example whi
h motivated mu
h of this work (
f. [193,p. 111℄):Example 2.0.1 Given a three dimensional 
ow, our main goal is to determinerelationships between the link of periodi
 orbits (as a topologi
al obje
t) andthe dynami
s and bifur
ations of the system. To pro
eed, we must be able toas
ertain whi
h types of knots and links a given 
ow supports. For a suÆ
iently
ompli
ated 
ow (e.g., on a basi
 set of dimension two), there exist a 
ountablein�nity of periodi
 orbits whi
h �ll up an attra
tor densely. In this 
ase, evenvisualizing the 
ow may be a 
hallenge.The following set of ordinary di�erential equations (ODEs) is known as theLorenz system [114℄: _x = 10(y � x)_y = 28x� y � xz (2.1)_z = �83z + xy;A numeri
al integration of the system suggests an attra
tor : all orbits appearto 
ollapse qui
kly onto a parti
ular subset L � R3, 
alled the Lorenz attra
tor.The stru
ture of this attra
tor is unusual: it appears to be two-dimensional, yetis not a manifold. Rather, the attra
tor L (illustrated in Figure 2.1) resemblesa bran
hed two-manifold. Nevertheless, as Lorenz realized at the outset [114℄, ithas in�nitely many sheets.If we wish to understand the periodi
 orbits of this system, we need only
onsider those orbits whi
h live on L, sin
e all other orbits appear to 
onvergeto L, and hen
e none of them 
an be periodi
. Thus, heuristi
ally, we 
an redu
e33
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Figure 2.1: The Lorenz attra
tor (
omputed via DsTool).the dimension of our problem by one: we need only 
onsider knotted orbits on abran
hed two-manifold. A template is just su
h a bran
hed two-manifold whi
h\supports" the periodi
 orbits of a 
ow. The theory of templates, whi
h we treatin this 
hapter, is a rigorous method for applying this idea to general hyperboli

ows on three-manifolds.2.1 Bran
hed manifolds and attra
torsIn order to motivate the Template Theorem of Se
tion x2.2, we brie
y des
ribethe role of bran
hed manifolds as attra
tors for hyperboli
 systems. We beginwith a dis
ussion of bran
hed one-manifolds in the dynami
s of two-dimensionalmaps before 
onsidering the role of bran
hed two-manifolds, or templates, in thedynami
s of three-dimensional 
ows.De�nition 2.1.1 A bran
hed one-manifold is a topologi
al spa
e built lo
allyfrom a �nite number of bran
h point 
harts, as illustrated in Figure 2.2(a). Ea
h
hart has a �nite number (� 1) of ar
s emanating from a bran
h point alongboth sides of a 
ommon tangent.Example 2.1.2 The bran
hed one-manifold of Figure 2.2(b) is known as thePlykin bran
hed manifold, �P .Bran
hed one-manifolds are a key tool for understanding expanding attra
torsfor 2-dimensional maps.
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(a) (b)Figure 2.2: (a) a bran
h point 
hart for a bran
hed one-manifold; (b) the Plykinbran
hed manifold, �P .De�nition 2.1.3 For f :M !M a di�eomorphism, a set � �M is an attra
torif there exists a 
ompa
t set N � M su
h that � = \1k=0fk(N) and � is
ontained in the 
hain-re
urrent set R(f). If f j� has a hyperboli
 stru
ture,then � is a hyperboli
 attra
tor. Finally, � is an expanding attra
tor if itis hyperboli
 and has topologi
al dimension equal to the dimension of Eu, theunstable bundle.Williams [192℄ 
onsidered the relationship between expanding attra
tors andbran
hed manifolds (in any dimension). For two-dimensional maps, the theoryboils down to the following:Theorem 2.1.4 (Williams [192℄) Let f : M ! M be a di�eomorphism on atwo-manifold M with � � M an expanding attra
tor. Then, there exists anembedded bran
hed one-manifold � � M and a noninvertible map g : � ! �su
h that f j� is 
onjugate to the shift map on the inverse limit of (�; g).De�nition 2.1.5 Given a map g : X ! X , the inverse limit, lim (X; g), is givenas the spa
e of all bi-in�nite sequen
es (: : : ; x�1; x0; x1; : : :), with g(xk) = xk+1.The shift map asso
iated to lim (X; g) takes ea
h xk to xk+1.The stru
ture of the expanding attra
tor � in Theorem 2.1.4 is 
ompli
ated| it is lo
ally the produ
t of R1 with a Cantor set [192℄. However, the mapg : �! � is more tra
table: e.g., the edges of � form a Markov partition for g.To understand the idea behind Theorem 2.1.4, and to provide an analogue forthe Template Theorem of x2.2, 
onsider the following:Example 2.1.6 Constru
t a map fP : R2 ! R2 whi
h has the a
tion illustratedin Figure 2.3(a). There is a 
ompa
t region N � R2 with three holes, ea
h
ontaining a sour
e, and an additional sour
e at \in�nity." N is foliated by line
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tion of fP takes N into itself, respe
ting the foliation and
ontra
ting ea
h segment by a uniform amount. Hen
e, the segments are stablemanifolds of fP .
N
�P

fP
gPab 
 d

Figure 2.3: (a) The map fP a
ting on N � R2 yields the Plykin attra
tor; (b)The indu
ed map on �P .The attra
tor, �P , is given as \kfkP (N) and is lo
ally the produ
t of a Can-tor set with a one-dimensional lo
al unstable manifold; sin
e �P has topologi
aldimension one (it has empty interior in R2 yet 
ontainsW ulo
(x)), it is an expand-ing attra
tor. This attra
tor is 
alled the Plykin attra
tor after [144℄. To realizethe asso
iated bran
hed one-manifold, 
ollapse ea
h 
omponent ofW s(x)\N toa point. Sin
e fP respe
ts the foliation by stable manifolds, the indu
ed map onthe bran
hed one-manifold, gP , is well-de�ned. It is obvious from Figure 2.3(a)that the bran
hed one-manifold is pre
isely the Plykin bran
hed one-manifold�P of Example 2.1.2. The dynami
s of fP is 
aptured by the indu
ed map gPwhi
h a
ts on �P as indi
ated in Figure 2.3(b).Exer
ise 2.1.7 Constru
t the subshift of �nite type asso
iated with the Plykinattra
tor.Example 2.1.6 is 
entral to the theme of this 
hapter: under 
ertain hyperboli
ity
onditions, Theorem 2.1.4 guarantees that an invariant set for a di�eomorphismon a two-manifold 
an be \repla
ed" by a non-invertible map on a bran
hedone-manifold, preserving the essential dynami
s. Furthermore, note that, inparti
ular, periodi
 orbits of the di�eomorphism are treated with respe
t |they are isotoped along the stable foliation. If we suspend the Plykin map fPand embed the 
ow in R3, periodi
 orbits be
ome knots and links. The a
tion of
ollapsing a stable foliation ne
essarily preserves individual knot and link types.We will repeat this theme in the next se
tion, substituting a three-dimensional
ow for a two-dimensional di�eomorphism, and bran
hed two-manifolds with
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ows for bran
hed one-manifolds with non-invertible maps. We will takethe 
onstru
tion a step further in that we do not merely 
onsider \attra
tors"in three dimensions.Remark 2.1.8 There is a great deal more to the story of bran
hed manifoldsand expanding attra
tors. In [192℄, it is shown that an expanding attra
torfor a di�eomorphism on an n + 1-manifold is 
ojugate to the inverse limit of adi�eomorphism on a bran
hed n-manifold, the higher-dimensional analogue ofthe bran
hed one-manifolds. Several authors have extended or related resultsin dimensions one (see the literature on train tra
ks) and two (see the work ofChristy [37℄).2.2 Templates and the Template TheoremWe now 
onsider an appropriate generalization of the bran
hed one-manifoldsof x2.1 for three-dimensional 
ows, su
h as that asso
iated with the Lorenzattra
tor of Example 2.0.1.De�nition 2.2.1 A template is a 
ompa
t bran
hed two-manifold with bound-ary and smooth expansive semi
ow built lo
ally from two types of 
harts: joiningand splitting. Ea
h 
hart, as illustrated in Figure 2.4, 
arries a semi
ow, endow-ing the template with an expanding semi
ow, and the gluing maps between
harts must respe
t the semi
ow and a
t linearly on the edges.

(a) (b)Figure 2.4: (a) a joining 
hart; (b) a splitting 
hart.
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owbox I�I having semi
ow given by translationin the se
ond 
oordinate. We de�ne a joining 
hart as the quotient spa
e ((I �I) [ (I � I))=�(x; y) = (x; y) : y � 12	 with the asso
iated semi
ow. Similarly,a splitting 
hart is de�ned as I � I minus the set �(x; y) : x 2 ( 13 ; 23 ); y 2 [0; 12 )	.The joining 
hart of Figure 2.4(a) 
ontains two in
oming strips and one out-going strip, all of whi
h meet tangentially at the bran
h line. The splitting
hart of Figure 2.4(b) turns one in
oming strip into two outgoing strips as pi
-tured. One builds a template by 
onne
ting the free ends of the outgoing stripsto the free ends of the in
oming strips between 
harts in a manner to be spe
i-�ed. Sin
e the template must be 
ompa
t, there may be no \free" ends, and thetotal number of 
harts and strips in a template must be �nite.Ea
h 
hart has an inherited semi
ow, by whi
h we mean an irreversible 
ow(an a
tion of R+) | a true 
ow is impossible sin
e reversing the 
ow just belowthe bran
h line would violate uniqueness. The semi
ow is over
owing in thesense that on the splitting 
harts, there is a gap in the strip through whi
hthe semi
ow \spills over." Sin
e we are 
on
erned with periodi
 orbits of thesemi
ow (i.e., knots), we ignore orbits exiting the template.We also require that ea
h gluing map 
onne
ting the free edge of an outgoingstrip to that of an in
oming strip be linear. The semi
ow as 
onstru
ted is thusexpansive in the sense that the noninvertible one-dimensional return maps forthe semi
ow indu
ed by the bran
h lines are expansive maps (these return mapsare also pie
ewise linear and hen
e uniformly hyperboli
). This being the 
ase,the dynami
s (up to 
onjuga
y) are determined uniquely by the 
ombinatorialdes
ription of the template in terms of 
harts and strips: there is no ambiguityin the semi
ow.Remark 2.2.3 Given a template de
omposed into joining and splitting 
harts,we will often pla
e it in a type of \normal form." For every splitting 
hart, thereis a gap through whi
h the semi
ow over
ows. Propagate this gap ba
kwards inthe semi
ow until it rea
hes a bran
h line in a joining 
hart: see Figure 2.5. Inthis representation, ea
h bran
h line has two in
oming strips and k � 1 outgoingstrips. We will often represent templates in this form, with the understandingthat (after a small perturbation at the bran
h lines) they are a
tually built fromjoining and splitting 
harts.The relationship between templates and links of periodi
 orbits in three di-mensional 
ows is expressed in the Template Theorem of Birman and Williams.This important result is the primary tool for the remainer of this book.Theorem 2.2.4 (The Template Theorem: Birman and Williams [24℄) Givena 
ow �t on a three-manifold M having a hyperboli
 
hain-re
urrent set, the linkof periodi
 orbits L� is in bije
tive 
orresponden
e with the link of periodi
 orbitsLT on a parti
ular embedded template T �M (with LT 
ontaining at most twoextraneous orbits). On any �nite sublink, this 
orresponden
e is via ambientisotopy.



2.2. templates and the template theorem 39

Figure 2.5: By propagating gaps ba
kwards, one obtains a normal form for atemplate.Although a proof of Theorem 2.2.4 appears in [24℄, we in
lude a proof for
ompleteness, as the methods will be of use later.Proof: LetR denote the 
hain-re
urrent set of the 
ow �t onM . By Theorem1.2.13, R de
omposes into a �nite number of basi
 sets Bi. The proof dependsupon the dimension of ea
h basi
 set B. Of 
ourse, if dim(B) = 0, there are noperiodi
 orbits and the result is trivially true. We treat the 
ases dim(B) = 1and dim(B) > 1 in the following subse
tions:2.2.1 Case 1: a Markov 
owbox neighborhoodAssume that dim(B) = 1. If we 
ould 
onstru
t a Poin
ar�e se
tion to the 
owon B, then Bowen's theorem on subshifts of �nite type (Theorem 1.2.23) wouldimply that B is 
onjugate to a suspended subshift of �nite type. Bowen [25℄ andBowen and Walters [28℄ have 
onsidered this situation, and have shown thatsu
h a 
ross-se
tion does exist, and 
an be taken to be a �nite union of disjointdis
s, f�igNi=1.Our strategy (�rst used in [24℄) is to use the properties of re
tangles (Def-inition 1.2.24) and Markov partitions (De�nition 1.2.25) to 
onstru
t a spe
ialneighborhood of B in M .Step 1: re
tangular re
tanglesLet � � [i�i be a 
olle
tion of embedded dis
s in M whi
h forms the afore-mentioned 
ross-se
tion to B. By Theorem 1.2.23, � \ B is a Cantor set witha Markov partition. Let 
 � [jRj be the re
tangles of the Markov partition(see De�nition 1.2.24), and let � : 
! 
 be the Poin
ar�e return map (a home-omorphism). Note: sin
e � \ B is a Cantor set, one may e�e
tively ignore the
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tangles may be
onsidered as the interse
tion of B with two-dimensional (literal) re
tangles inthe 
oordinates de�ned by lo
al stable and unstable manifolds.Following [24, p. 14℄, for x 2 Rj 
hoose the segment Is(x) � W slo
(x) su
hthat its boundary lies in Rj and su
h that it is the maximal su
h segment underin
lusion. Choose Iu(x) �W ulo
(x) likewise and 
onsider the setGj = [x2Rj Is(x) [ Iu(x): (2.2)From De�nition 1.2.24, one 
an show that Rj � � is the 
artesian produ
tW s(x;Rj) � W u(x;Rj). Hen
e, Gj is a re
tangular \grid" bounding a two-dimensional dis
 Hj whi
h must be homeomorphi
 to I � I : a two-dimensional\re
tangle." We will refer to the dis
s Hj as handles [53℄, and denote their unionH .Lemma 2.2.5 The handles Hj are pairwise disjoint.Proof: Sin
e we may re�ne the Markov partition 
 to have re
tangles of ar-bitrarily small diameter (see De�nition 1.2.25), it remains to show that there
tangles Ri are separated (as sets) by a nonzero distan
e. However, sin
e thezero-dimensional sets Ri have no boundary in 
, every x 2 Ri is in its interior,and must be bounded away from any other Rj by Condition 2 of De�nition1.2.25 and the fa
t that re
tangles are 
losed. 2Step 2: the a
tion of � on the handlesExtend the return map � to the handles H . Although not well-de�ned ev-erywhere, � is still a homeomorphism on a neighborhood of 
 � H .Lemma 2.2.6 If �(Hi) \Hj 6= ;, then �(Hi) stret
hes 
ompletely a
ross Hj inthe unstable dire
tion, and ��1(Hj) stret
hes 
ompletely a
ross Hi in the stabledire
tion. Furthermore, �(Hi) \Hj has at most one 
onne
ted 
omponent.Proof: By Condition 3 of De�nition 1.2.25, �(W u(x;Ri)) � W u(�(x); Rj ) forx 2 Ri. Reverse the 
ow dire
tion to show the analogous result for stable man-ifolds. Finally, assume that �(Hi) \Hj has two 
omponents. Then, for x 2 Hi,�(Iu(x)) 6� Iu(�(x)), in violation of Condition 4 of De�nition 1.2.25. 2Let A be the square matrix with ea
h entry A(i; j) equal to the geometri
interse
tion number of �(Hi) with Hj . By Lemma 2.2.6, this number is eitherzero or one, and A is the transition matrix for the Markov partition 
.Step 3: a Markov 
owbox neighborhoodBy 
owing the handles Hi forwards and ba
kwards in time, we 
onstru
t a
owbox neighborhoodN(B) for the handle set whi
h appears as in Figure 2.6(a):there are a �nite number of in
oming and outgoing 
owboxes near ea
h Hi.Consider the transition matrix A: the ith row of A re
ords whi
h handlesHi 
ows to. Thus, there arePj A(i; j) 
omponents of ��1(H)\Hi. By Lemma
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(a) (b)Figure 2.6: A Markov 
owbox neighborhood of the zero-dimensional basi
 set.2.2.6, ea
h of these 
omponents stret
hes 
ompletely a
ross Hi in the stabledire
tion. Hen
e, there are Pj A(i; j) outgoing 
owboxes 
onne
ted to Hi. Byreversing the time dire
tion and applying the same argument, one shows thatthere are Pj A(j; i) in
oming 
owboxes 
onne
ted to Hi and stret
hing in theunstable dire
tion. Sin
e � is a homeomorphism on 
 and 
 interse
ts theboundary of ea
h handle Hi, the 
ow boxes must \line-up" along the edges asin Figure 2.6(a).Finally, we enlarge the 
owbox neighborhood N(B) slightly to have the formof Figure 2.6(b): a small perturbation is all that is required. This is done to �tthe joining and splitting 
hart requirements in De�nition 2.2.1.Lemma 2.2.7 The periodi
 orbits of � are in bije
tive isotopi
 
orresponden
ewith those in an embedded template T �M .Proof: Given the Markov 
owbox neighborhood of N(B) 
onstru
ted above,one \
rushes" a stable foliation as in Example 2.1.6 to obtain a bran
hed man-ifold. Spe
i�
ally, form the quotient spa
e given by identifying all points onW s(x) \ N(B), for x 2 B. The e�e
t of the 
ollapse on the 
owbox neighbor-hood is to take it to a 
olle
tion of joining and splitting 
harts as per De�nition2.2.1 and Figure 2.4. The 
ollapsing pro
edure may be done smoothly, yieldingan ambient isotopy on �nite links of periodi
 orbits. 2This 
ompletes the proof of Theorem 2.2.4 in the 
ase of a one-dimensionalbasi
 set. In this 
ase, there are no \ex
eptional" orbits, as in the statement ofTheorem 2.2.4 | the knots and (�nite) links are in bije
tive isotopi
 
orrespon-den
e.Remark 2.2.8 Let us reformulate what we have done in terms of the symboli
dynami
s. The 
ow restri
ted to the one-dimensional basi
 set B is 
onjugate
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an be put in 1:1 
or-responden
e with a bi-in�nite symbol sequen
e in �A, where A is the transitionmatrix for the subshift. In 
ollapsing out the strong stable foliation, we areidentifying orbits whi
h asymptoti
ally 
onverge in forwards time. This has thee�e
t of ignoring the past; hen
e, the template 
onstru
tion \
hops o�" the lefthalf of every symbol sequen
e (the past), leaving a one-sided symbol sequen
e(the future). In parti
ular, periodi
 orbits, whose pasts and futures 
oin
ide, areuna�e
ted by this pro
edure. Orbits on a template 
an thus be put in bije
tive
orresponden
e with a one-sided subshift of �nite type (
f. Remark 1.2.27). Wewill return to this idea and 
onsider it 
arefully in Se
tion 2.4.Exer
ise 2.2.9 Des
ribe what happens, topologi
ally and symboli
ally, whenone 
ollapses out an unstable foliation instead of a stable one. Does this al-ways/ne
essarily yield the \same" template?2.2.2 Case 2: the DAAssume dim(B) > 1. We redu
e this s
enario to that of Case 1 by a pro
edureknown as the DA, or, derived from Anosov. This modi�
ation to a 
ow is orig-inally due to Smale [165℄, and has been expli
itly des
ribed by Robinson [153℄,Franks and Robinson [57, Appendix℄, and Williams [190℄. Synonymous terms forthis 
onstru
tion in
lude Smale surgery and orbit splitting. Our ultimate goalis, as in Case 1, to 
ollapse M by identifying orbits in a strong stable foliation.But we 
annot always do so dire
tly:Example 2.2.10 Let f : T 2 ! T 2 be the hyperboli
 toral map of Example1.2.7 and let �t be the suspension 
ow asso
iated with f . This is a 
ow onthe 
ompa
t three-manifold T 2 � I=(x; 0) � (f(x); 1), whi
h is not T 3 sin
e fis not isotopi
 to the identity map. This 
ow has a hyperboli
 
hain-re
urrentset; however, the dimension of the [unique℄ basi
 set is three (re
all that typi
alorbits of f 
over T 2 densely). If one nevertheless 
ollapses ea
h stable manifoldto a point, the resulting spa
e is not a template. Re
all from Example 1.2.7that stable manifolds of points under f wind about on T 2 densely. This impliesthat for the 
ow �t, the stable manifold of any point is arbitrarily 
lose tothat of any other point; hen
e, 
ollapsing stable manifolds for this 
ow yields anon-Hausdor� spa
e | 
ertainly not the desired obje
t.The DA 
onstru
tion resolves this problem by �rst opening up a \hole" inM and separating the invariant manifolds.Assume dim(B) = 3, and 
onsider a 
losed orbit 
 along with a small tubularneighborhood N� � N�(
) of diameter �. We will modify the 
ow �t on N� asfollows. For ea
h x 2 
, let [es; eu; e
℄(x) be the 
oordinate frame based at thepoint x spanning the stable, unstable, and 
enter dire
tions (this is uniquelyde�ned by the de�nition of hyperboli
ity and by the Stable Manifold Theorem).For suÆ
iently small �, the lo
al planes spanned by es and eu foliate N� with
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s. Consider the ve
tor �eld X , given by:X(x) = � (xs; 0; 0) x = (xs; xu; x
) 2 N�0 x =2 N� : (2.3)The DA 
ow, �DAt , is de�ned to be the 
ow generated by the ve
tor �eldd�DAdt = d�dt + �X; (2.4)for some � > 0. The e�e
t of adding �X is to \push out" the 
ow along thelo
al stable manifold of 
. For very small �, there is no qualitative 
hange inthe 
ow. But for � larger than the 
ontra
tion rate for the stable manifold of 
,the 
ow is altered .Lemma 2.2.11 For appropriate 
hoi
e of in
reasing �, 
 bifur
ates from asaddle-type orbit to a sour
e along with one or two additional saddle-type or-bits in a small tubular neighborhood of 
.Proof: Consider a lo
al 
ross se
tion � for the 
ow, transverse to 
. Then,for � = 0, 
 is a �xed point under the indu
ed return map. Consider furtherthe 
ross se
tion given by I = W slo
(
) \ � for I suÆ
iently long: this indu
esa hyperboli
 return map r on the one-dimensional segment I . For � = 0, thereturn map on I is a 
ontra
tion by some fa
tor 0 < � < 1 (
f. Theorem1.2.9). Also, r may be orientation preserving or reversing, depending upon theorientation of the stable bundle Es of 
.Regard I as the interval [�1; 1℄ with the �xed point 
orresponding to 
 at theorigin. Then, for � = 0, the return map is 
onjugate to x! ��x, depending onwhether the map is orientation preserving (+) or reversing (�). In
reasing � hasthe e�e
t of 
hanging the map on a small neighborhood of the origin, in
reasingthe slope (in absolute value). At a 
ertain �� > 0, there is a bifur
ation whenthe slope at 0 is �1 (
f. x1.2.3). When r is orientation preserving, a pit
hforkbifur
ation o

urs, sin
e there is a symmetry x 7! �x imposed. In this 
ase, twonew periodi
 orbits, 
0 and 
00, are 
reated, ea
h isotopi
 to 
 (though perhapslinked). In the nonorientable 
ase, a period-doubling bifur
ation o

urs, 
reatinga single orbit 
0, isotopi
 to the twisted double of 
: see Figure 2.7. Ea
h of thenew orbits 
0 and 
00 are of saddle-type, and 
 has be
ome a sour
e (as per thedes
ription of x1.2.3). 2Versions of the following proposition appear in [165, 153, 190, 57℄.1Proposition 2.2.12 Let � denote the 
omplement of W u(
) for the DA 
ow�DAt on B. Then � is a hyperboli
 expanding attra
tor.Proof: By de�nition, W u(
) = [t>0�DAt (W ulo
(
)) ; (2.5)1The results are proved only for the 
ase of the toral Anosov di�eomorphism of Example1.2.7.
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Figure 2.7: Orbit splitting 
reates one or two new saddle-type orbits.hen
e, �DAt (W ulo
(
)) � W ulo
(
) for t > 0 and the 
omplement B nW ulo
(
) is apositively invariant region for the 
ow. This implies that� = \t>0�DAt (M nW ulo
(
)) ; (2.6)is an attra
tor. To show that � is hyperboli
, note �rst that from Equation (2.3),stable manifolds are preserved by the 
onstru
tion (ex
ept that of 
, of 
ourse):hen
e, the stable bundle Es on � under �DAt is pre
isely that of the original
ow �t. Although the DA perturbation to �t disrupts the unstable bundle, Eu,it does so gently. To produ
e an unstable bundle on �, it suÆ
es to 
onstru
t
ones in TMx, for x 2 �, whose sides are estimated from the e�e
t of the DAperturbation on the unstable bundle of the original 
ow �t. Upon iteration, these
ones 
onverge to the new unstable bundle Eu. This is a pro
edure familiar todynami
ists: a

ounts and examples appear in [135, 76℄.To show that � is expanding (re
alling De�nition 2.1.3), we �rst show thatthe 
omplement, W u(
), is dense in B. Pi
k � 2 B. We 
laim that W s(�),the strong stable manifold of � under �t, is dense in B. Sin
e B is a basi
 set,Theorem 1.2.23 states that there is a Markov partition for a 
ross-se
tion of Bwith a 
ontinuous surje
tion from the subshift of �nite type to the 
ross se
tionof B. Hen
e, using the same tri
k as in Exer
ise 1.2.30, we 
an 
onstru
t asymboli
 stable manifold of � whose ba
kwards orbit is dense in symbol-spa
e.Then, sin
e the map to B is a surje
tion, the stable manifold is dense.However, the DA perturbation leaves the stable bundle invariant, so thestable manifold of � under �DAt is also dense in B. Choose x 2 � and Nx asmall neighborhood in B. Any y 2 Nx \W s(�) 
ows by �DAt arbitrarily 
lose toany point in B in ba
kwards time; However, this implies that �DA�t (y) interse
ts
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) in the DA 
ow for t suÆ
iently large, sin
e W u(
) 
ontains a tubularneighborhood of 
. Sin
e W u(
) is invariant under the 
ow, y 2 W u(
), whi
his thus arbitrarily 
lose to x 2 �.As su
h, W u(
) is dense in the three-dimensional basi
 set B, so dim(�) � 2.Consider the periodi
 orbit 
0. Sin
e it is not in W u(
), it must be a subset of�. Sin
e � is an attra
tor, a small 
ompa
t neighborhood N� 
an be 
hosenwhi
h is forward invariant. Sin
e 
0 � �, it follows that W ulo
(
0) � N�. Byde�nition, � is the interse
tion of the forward 
ow of N�; thus, as the forward
ow of W ulo
(
0) is the invariant manifold W u(
0), it follows that W u(
0) � �.Sin
e W ulo
(
0) is of topologi
al dimension two, so is �. 2Lemma 2.2.13 With the ex
eption of the additional orbits 
0 and 
00, the peri-odi
 orbits of �t and those of �DAt are in bije
tive isotopi
 
orresponden
e.Proof: Let ��t denote the DA 
ow for a �xed tubular neighborhood N� of 
 withdiameter � > 0. Shrink � 
ontinuously and 
onsider the 1-parameter family of
ows ��t as �! 0. For ea
h suÆ
iently small � > 0, the invariant set �� is hyper-boli
. Hen
e, all the DA 
ows on �� for (small) � > 0 are topologi
ally 
onjugate,and the 1-parameter family of homeomorphisms gives an isotopy between theirperiodi
 orbit sets. Sin
e the DA 
ow is a modi�
ation of the original �t on thetubular neighborhood N�, those periodi
 orbits whi
h do not interse
t N� areidenti
al, and hen
e isotopi
. As �! 0, every periodi
 orbit of �t eventually fallsout of N� ex
ept 
, whi
h is repla
ed in the DA by 
; 
0, and (if ne
essary) 
00. 2Remark 2.2.14 By performing a DA splitting along 
, we have 
reated one ortwo new orbits and redu
ed the topologi
al dimension of our basi
 set to two.It is remarkable that a small perturbation to an Anosov 
ow 
an redu
e thedimension of the basi
 set. One 
an pi
ture this as follows: 
onsider W u(
) forthe Anosov 
ow �t. This invariant manifold runs through M densely. Afterthe DA perturbation, the 
reation of a sour
e and two orbits 
0 and 
00 maybe thought of as \splitting" what was W u(
) into a \thi
k" unstable manifoldbounded by W u(
0) and W u(
00). Thus, like thi
kening the rational points ofan interval to obtain a Cantor set in the 
omplement, the 
omplement of W u(
)in the DA 
ow is an attra
tor whi
h is lo
ally the produ
t of D2 � C, where Cis a Cantor set.Remark 2.2.15 From the work of Williams on expanding attra
tors [192℄, itfollows that the attra
tor � is transitive: a basi
 set.We may attain our goal of redu
ing the dimension of the basi
 set to oneby performing another splitting on another 
losed orbit. Suppose � is a basi
set of dimension two. Sin
e � is two dimensional and hyperboli
 and M three-dimensional, the stable, unstable, and 
enter bundles must ea
h be of dimensionone. Sin
e � must 
ontain the 
enter bundle, it must also 
ontain either the
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tion. Hen
e, � iseither an attra
tor or a repellor.Assume � is a repellor (this is the opposite of what one obtains from a DAon a three-dimensional basi
 set, but one may reverse time and so obtain arepellor). Then, as before, 
hoose a 
losed orbit 
̂ (if appli
able, one of the\new" orbits obtained from the DA would do ni
ely) and modify the 
ow on asmall neighborhood as in Equations (2.3) and (2.4). As before, this 
reates oneor two new saddle-type orbits in the new basi
 set, 
̂0 and 
̂00, while 
hanging 
̂to a sour
e.Let �̂ denote the 
omplement of W u(
̂) in �. The arguments of Proposition2.2.12 
arry over almost verbatim to show that �̂ is a basi
 set of dimension one.The steps pro
eed as follows, with details as in Proposition 2.2.12:1. �̂ is hyperboli
: orbit splitting leaves stable bundles invariant | estimateunstable bundles via 
ones.2. W u(
̂) is dense in �̂: arguing as in Proposition 2.2.12.3. dim �̂ = 1: sin
e W u(
̂) is dense in the two-dimensional �, dim �̂ � 1,but �̂ 
ontains one-dimensional 
owlines.Also, as in Lemma 2.2.13, the periodi
 orbit set is un
hanged ex
ept for theadditional orbits 
̂0 and 
̂00 sin
e we modify the 
ow on an arbitrarily smallneighborhood of an orbit.Proof of Theorem 2.2.4: After at most two orbit splittings, one may redu
ethe basi
 set B to the one-dimensional Case (1); then, by 
ollapsing out a strongstable foliation, the desired template is obtained. 2Remark 2.2.16 In the 
ase of the orbit splitting involved in the DA 
onstru
-tion, one begins with a knot 
 and repla
es it with either two isotopi
 
opiesof itself (perhaps linked), or with a \doubled" knot (perhaps twisted). Sin
ethere are at most two orbit splittings, there are at most two extraneous knotsin the template whi
h do not 
orrespond to 
losed orbits in the original 
ow.Note, however, that any 
losed orbit is suitable for splitting; di�erent 
hoi
esmay yield ostensibly di�erent templates.Remark 2.2.17 A version of Theorem 2.2.4 in higher dimensions would bedesirable. There are impassable obstru
tions to this, not the least of whi
h isthe fa
t that knotting and linking of orbits in dimensions higher than three isnonexistant. In addition, the orbit-splitting pro
edure is more dramati
 in higherdimensions, where, instead of 
reating one or two additional orbits (an S1 bundleover S0), an entire S1 bundle over Sk is 
reated in dimension k + 3. Of 
ourse,under unusual 
ir
umstan
es, a high-dimensional 
ow 
ontains global strongly
ontra
ting dire
tions whi
h allow one to �rst redu
e to a three-dimensional 
owand then pro
eed as usual; however, the original 
ow is not then essentially highdimensional.
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ations 47Remark 2.2.18 Several authors have used bran
hed two-manifolds of a slightlydi�erent form than the templates of this 
hapter { these are 
losed (boundaryless)bran
hed two-manifolds. The de�nition in terms of 
harts is slightly di�erent(see [192, 37℄), but a 
losed bran
hed two-manifold 
an usually be transformedinto a template via splitting along a �nite number of orbits. These bran
hedmanifolds have been used to 
hara
terize hyperboli
 attra
tors in 
ows [192, 37℄as well as to 
apture in
ompressible surfa
es in three-manifolds [82, 48, 61℄.2.3 Examples and appli
ationsIn this se
tion, we present a 
olle
tion of examples of templates, along withtypi
al situations in whi
h one may use templates to 
apture the periodi
 orbitsin a 
ow or a portion of a 
ow. The following subse
tions in
lude a variety oftopi
s, from ODEs to �bred 3-manifolds to time series. Though we will referba
k to several of these examples in subsequent 
hapters, the reader may skipor skim the following without serious loss of 
ontinuity.2.3.1 The Lorenz-like templatesExample 2.3.1 (Lorenz-like templates) The simplest examples of templatesare those formed from a single bran
h line 
hart with two strips: the Lorenz-liketemplates. For m;n 2 Z, denote by L(m;n) the template pi
tured in Fig-ure 2.8(a). The two unknotted, unlinked strips have m and n signed half-twistsrespe
tively.
nm (a) (b) (
)Figure 2.8: (a) The Lorenz-like template L(m;n); (b) the Lorenz templateL(0; 0); (
) the horseshoe template L(0; 1) = H.Example 2.3.2 The Lorenz template, L(0; 0), is pi
tured in Figure 2.8(b). Thistemplate is an idealization of the attra
tor for Equation (2.1) in Example 2.0.1.The link of periodi
 orbits supported on L(0; 0) has a number of interesting prop-erties, as shown by Birman and Williams [23℄. We list some of these propertieshere and refer the reader to [23℄ and [195℄ for proofs.
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hapter 2. templatesTheorem 2.3.3 (Birman and Williams [23℄, Williams, [195℄) Let L be a link of� � 1 
omponents on L(0; 0). Then L is a positive braid and also a �bred link(see De�nition 2.3.10). Every 
omponent of L is prime. Every torus knot liveson L(0; 0).Example 2.3.4 (the horseshoe template) The horseshoe template, H, isisotopi
 to the Lorenz-like template L(0; 1) of Example 2.3.1. However, themethod of obtaining this template from Smale's horseshoe map (Example 1.2.28)is 
ru
ial.Re
all from Example 1.2.28 that the standard horseshoe map f a
ts on asquare I2 � R2, depi
ted in Figure 2.9. Suspending f yields a 
ow on a mappingtorus I2�S1. Embedding this 
ow into R3 in the \standard" way (no additionaltwists) yields a well-de�ned suspension 
ow as depi
ted in Figure 2.9. Sin
e fis hyperboli
, the 
onditions of Theorem 2.2.4 are satis�ed and we may obtaina template, H.
identify

Figure 2.9: The embedded suspension of the Smale horseshoe map may be 
ol-lapsed to form the horseshoe template H.The map f has stable (
ontra
ting) and unstable (expanding) foliationswhose leaves are horizontal and verti
al lines respe
tively. To obtain a tem-plate, we need merely 
ollapse ea
h leaf of the stable (or unstable, if we reversetime) foliation to a point. This appears in Figure 2.9 also, where the resultingtemplate H is seen to be isotopi
 to the Lorenz-like template L(0; 1).Holmes and Williams [93℄ and Holmes [88, 90℄ have made extensive studies ofwhi
h types of knots live on the templateH: see [70℄ for a review. We will use thehorseshoe template in Chapter 4 to derive more general results for bifur
ationsin ODEs. In 
ontrast to Theorem 2.3.3, the following proposition will be provedin x4.2 
on
erning knots on H:Proposition 2.3.5 (Holmes and Williams [93℄) The horseshoe template H 
on-tains no (p; q) torus knots for whi
h p < 3q=2 (or, equivalently, q < 3p=2).



2.3. examples and appli
ations 49In general, little is known about whi
h knots live on the Lorenz-like templatesfor arbitrary m;n | even for su
h a simple family as torus knots. But perhapsknowing something about whi
h knots live on some L(m;n) gives informationabout the existen
e of this knot on other Lorenz-like templates.Problem 2.3.6 For whi
h pairs of integers (m;n) and (m0; n0) is it true thatany knot whi
h lives on L(m;n) must also live on L(m0; n0)?Sullivan [168℄ has given a partial answer to this question. We will return toProblem 2.3.6 and �ll in some of the gaps later in x3.2 and x3.3.2.3.2 Nonlinear os
illators, horseshoes, and H�enon mapsIn this and the following subse
tion, we indi
ate how hyperboli
 sets and tem-plates su
h as those introdu
ed above arise in some spe
i�
 
lasses of 
ows andmaps.Versions of the Smale horseshoe (Example 1.2.28) 
an appear naturally inperiodi
ally for
ed os
illators of the form�x = f(x; _x; t) ; f(x; _x; t) = f(x; _x; t+ T ); (2.7)for �xed T > 0. Letting _x = y, t = �, and regarding � as an element ofS1 = R1=TZ, we may rewrite (2.7) as a ve
tor �eld on a two-manifold 
ross S1:_x = y_y = f(x; y; �) (2.8)_� = 1:Example 2.3.7 We give two examples of for
ed os
illators as per Equation(2.8): the DuÆng equation,_x = y_y = x� x3 � Æy + 
 
os!� (x; y; �) 2 R1 � R1 � S1 (2.9)_� = 1;and the for
ed, damped pendulum,_� = v_v = � sin�� Æv + 
0 + 
1 
os!� (�; v; �) 2 S1 � R1 � S1 (2.10)_� = 1:Here, Æ; 
; !, et
. are parameters whi
h may be varied externally to indu
e bifur-
ations in the 
ows. These and other examples arise in physi
s and engineeringas models of me
hani
al and ele
tri
al devi
es (e.g., [137, 4℄). In the 
ase ofEquation (2.9), uniformly bounded solutions su
h as periodi
 orbits live withina 
ompa
t region D2 � S1 of the phase spa
e; in the 
ase of Equation (2.10),the appropriate region is S1 � I1 � S1 = A� S1, where A denotes the annulus.



50 
hapter 2. templatesIn general, a global 
ross se
tion � = f(x; y; �) : � = 0g exists on whi
h the 
owof (2.8) indu
es a Poin
ar�e map, P . For both equations (2.9) and (2.10), withpositive damping Æ > 0,detDP = exp Z T0 tra
e [Ja
obian(P )℄ dt! = e�ÆT ; (2.11)so P uniformly 
ontra
ts areas, and there is a 
ompa
t trapping region (D2 orA, in these 
ases) into whi
h all orbits eventually enter and thereafter remain,and whi
h 
ontains the attra
tor. See, for example, [76, 85℄. For spe
i�
 ODEs,su
h as those above, for small damping (Æ) and for
ing (
), 
ertain perturbationmethods, pioneered by Melnikov [120℄, may be used to prove the existen
e oftransverse homo
lini
 orbits to a hyperboli
 periodi
 orbit: see Figure 2.10(a)and [76℄. Then, by Theorem 1.2.33, there exists a Smale horseshoe within thereturn map. More pre
isely, some iterate PN of P 
ontains a full shift on twosymbols. In the simplest 
ase, N = 1, and, as indi
ated in Figure 2.10(b), forthe DuÆng equation, we have pre
isely the suspension of the horseshoe given inFigure 2.9. More 
ompli
ated embeddings of the horseshoe template within afor
ed os
illator are, of 
ourse, abundant in 
ases where N > 1.

(a) (b)Figure 2.10: A Poin
ar�e map for the for
ed DuÆng equation; (a) invariantmanifolds; (b) the \simplest" horseshoe.While properties of su
h Poin
ar�emaps, in
luding the existen
e of homo
lini
orbits, 
an be proven, expli
it expressions for these maps 
annot be obtained.Consequently, mu
h in the spirit of Gu
kenheimer's and Williams's 
onstru
-tion of a geometri
al Lorenz attra
tor [77℄, H�enon, in 1976 [83℄, proposed apolynomial mapping that models the behavior of the Smale horseshoe.2 This2He a
tually did this in 
onne
tion with the Lorenz equation in a di�erent parameter regimefrom (2.1).



2.3. examples and appli
ations 51two-parameter family may be written(x; y) 7! (y;��x+ �� y2): (2.12)(A di�erent, albeit equivalent form appears in [83℄.) Observe that detDF = �is 
onstant, so that, for 0 < � < 1 the map preserves orientation and 
ontra
tsarea uniformly, as do the Poin
ar�e maps dis
ussed above. For � = 1, it preservesarea, and for � = 0, all orbits 
ollapse in one iterate to the parabola y = �� x2,after whi
h their behavior is governed by the one-dimensional mapy 7! �� y2; (2.13)mentioned in x1.2.3.For large � [� > � 5+2p54 � (1 + j�j2) suÆ
es [42℄℄, (2.12) 
ontains a full shifton two symbols, while for � < 14 (1 + �)2, the 
hain-re
urrent set is empty. For�xed � and in
reasing �, an in�nite sequen
e of bifur
ations o

urs in whi
hthe horseshoe, with its 
ountable set of periodi
 orbits, is 
reated. The H�enonmap provides a useful model for horseshoe 
reation, to whi
h we shall returnin x4.2. In fa
t, it has re
ently been shown that the H�enon map with small� is present in an asymptoti
 limit for high iterates of all Poin
ar�e maps nearthe (global) bifur
ations in whi
h homo
lini
 orbits are 
reated in quadrati
tangen
ies [140, 131℄.Due to the �rst 
omponent of the ve
tor �eld (2.8), the maps 
onsideredabove preserve orientation and derive from, or lead naturally to, 
ows withorbit 
rossings all of one sign, hen
e yielding positive templates. In the nextsubse
tion, we introdu
e a 
lass of 
ows whi
h yield more general templates.2.3.3 Shil'nikov 
onne
tionsRe
all the Poin
ar�e-Birkho�-Smale Theorem (Theorem 1.2.33), whi
h we usedin Se
tion 1.2.2 to embed horseshoe-like templates within a three-dimensional
ow 
ontaining a transverse homo
lini
 orbit to a periodi
 orbit. The nextfamily of examples we 
onsider is derived from a similar theorem, due to L.P. Shil'nikov, whi
h proves the existen
e of suspended horseshoes near 
ertaintypes of homo
lini
 
onne
tions to a �xed point:De�nition 2.3.8 A Shil'nikov 
onne
tion for a 
ow �t on Rn (n � 3) is anorbit � whi
h satis�es the following two 
onditions:1. � is homo
lini
 to a hyperboli
 �xed point p, and � must be bounded awayfrom all other �xed points.2. The linearization D�jp of the 
ow at p has leading eigenvalues f��s �!i; �ug, with �u > �s > 0 ! 6= 0: (2.14)By \leading" is meant that any other eigenvalues have real parts outsideof the interval [��s; �u℄.
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(b)(a)Figure 2.11: (a) A Shil'nikov 
onne
tion in R3; (b) the Markov partition for asuspended horseshoe.Shil'nikov 
onne
tions o

ur frequently in systems modeling physi
al phe-nomena, su
h as 
ow through pipes [36℄, 
oupled os
illators [187℄, magneto
on-ve
tion [155℄, and ele
tri
 
ir
uits [38, 105℄. The following theorem was �rstproved by Shil'nikov [160, 161℄, with extensions and repetitions later in [179℄and elsewhere. A number of textbooks also 
ontain these results along withproofs [76, 188, 189℄.Theorem 2.3.9 (L. P. Shil'nikov [161℄) Let �t be a 
ow supporting a Shil'nikov
onne
tion � to a �xed point p. Then, there exists a 
ountable in�nity of sus-pended Smale horseshoes in the 
ow in an arbitrarily small tubular neighborhoodof the homo
lini
 orbit �. Under a small C1 perturbation, �nitely many of thesehorseshoes remain.We give an outline of the proof of Theorem 2.3.9 in x4.4.2.The entire 
ow near � does not satisfy the hyperboli
ity requirements ofTheorem 2.2.4: moreover, there are numerous features of the dynami
s and(espe
ially) bifur
ations of 
ows near su
h orbits that are still poorly understood.However, the individual horseshoes implied by Theorem 2.3.9 are hyperboli
, andif, as in the previous subse
tion, we restri
t our attention to any su
h subset ofthe 
ow, we may employ Theorem 2.2.4 to obtain a template whi
h 
aptures aportion of the 
ow, 
on
luding that orbits on the embedded horseshoe templatesare in one-to-one isotopi
 
orresponden
e with a proper subset of orbits in the
ow near �. This is our strategy for �nding templates within this 
lass of 
ows.The task, then, is to 
arefully tra
k how the suspended horseshoes are embeddedwithin the 
ow.The proof of Theorem 2.3.9 involves 
onstru
ting Poin
ar�e se
tions transverseto � near the �xed point p and linearizing the 
ow near p and along � to obtain
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ations 53approximate return maps. The horseshoes are 
onstru
ted by 
owing pairs ofre
tangles near p and then along �: see Figure 2.11.Sin
e these horseshoes are hyperboli
, we 
an keep tra
k of their stable andunstable foliations. By 
ollapsing one set of these foliations and 
arefully follow-ing the embedding, we 
onstru
t an embedded template. First, we 
ollapse the
ow near the �xed point p, yielding two strips whi
h, due to the spiraling natureof the 
ow, wind aboutW u(p) in N full twists before fusing at a bran
h line: seeFigure 2.12(a). Se
ondly, we follow the template along the unstable manifoldW u(p), twisting an unspe
i�ed number of times along with the stable/unstablebundles ofW u(p) before re
onne
ting: see Figure 2.12(b). (The number dependsupon the size of the neighborhood of p on whi
h the lo
al, almost-linear, mapis 
onstru
ted: the neighborhood must be taken suÆ
iently small for various
one estimates, ne
essary for hyperboli
ity, to hold.) Assuming that W u(p) isunknotted, this 
onstru
tion yields an embedding of the template obtained byinserting a �nite number of half-twists in the horseshoe template L(0; 1) afterthe bran
h line.

(a) (b)Figure 2.12: (a) The template near the �xed point p; (b) global twisting alongthe unstable manifold.The fa
t that there are an indeterminate number of twists in the abovetemplate is a diÆ
ulty: given a system 
ontaining a Shil'nikov 
onne
tion, it isknown only that these templates exist in the 
ow for suÆ
iently large amountsof twisting. We will address this later in x4.4, after developing more tools.Despite the apparent indetermina
y of these templates, they exhibit severalinteresting features. For example, all of the suspended horseshoes near thehomo
lini
 orbit are disjoint and link one another in various ways. In addition, anumber of extensions to Theorem 2.3.9 exist [179℄: besides suspended horseshoes,
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e, a variety of
ompli
ated templates are embedded in these 
ows, whi
h 
apture (portionsof) the periodi
 orbit set. Finally, when the ve
tor �eld is symmetri
 or whentwo-parameter families are 
onsidered, there is the possibility of a �xed point psupporting a pair of Shil'nikov 
onne
tions. Su
h a stru
ture might appear as inFigure 2.13(a). The appendix of [71℄ 
atalogues the possible templates in thesesituations.
identify

(a) (b)Figure 2.13: (a) A pair of Shil'nikov 
onne
tions at p; (b) two templates 
orre-sponding to 
oupled horseshoes near a pair of 
onne
tions.2.3.4 Fibred knots and linksConsider a thin knotted wire suspended in spa
e through whi
h passes an ele
tri

urrent. On the 
omplement of the knot, the 
urrent indu
es a magneti
 �eldwhi
h may have 
losed �eld lines. The way in whi
h these 
losed 
urves entwinethe wire is intimately related to the knotting of the wire. This 
on
ept of anindu
ed �eld on the 
ompliment of a knot is made mathemati
ally pre
ise bythe notion of a �bred knot.A knot or link K in S3 is �bred if the 
omplement S3 nK �bres over S1 with�bre a Seifert spanning surfa
e M [154, 33℄. More spe
i�
ally,De�nition 2.3.10 A knot or link K is �bred if there exists an orientable surfa
eM with boundary �M = K and a homeomorphism � : M ! M su
h that the
omplement S3 nK is homeomorphi
 to the quotient spa
e (M� [0; 1℄)= � where(x; 0) � (�(x); 1). The surfa
e M is the Seifert spanning surfa
e and the map� is the monodromy.



2.3. examples and appli
ations 55The simplest example of a �bred knot is the unknot, whi
h has as �bre thedis
 D2 and monodromy the identity map id : D2 ! D2. Figure 2.14 illustratesthe �bration of the 
omplement in S3, where it is seen that a �bration is akin to\blowing a bubble"M with bubble-ringK so as to �ll out all of the 
omplement,through the point at in�nity, returning to the initial 
on�guration. In Figure2.14, ea
h dis
 has the unknot as its boundary | we have 
ut open some of thedis
s for visualization.

Figure 2.14: The �bration of the unknot 
omplement by dis
s.In �bring the 
omplement in this manner, a 
ow is indu
ed on S3 n K byfollowing a point onM as it is pushed through the 
omplement. This is pre
iselythe suspension 
ow of the monodromy � embedded in S3 nK. The monodromy� is thus a global return map for the 
ow, de�ned on the Seifert surfa
e M ,whi
h 
ompletely 
aptures the dynami
s. Alternatively, there exists a map � :S3 n K ! S1, 
alled the �bration, whi
h has as its �bre ��1(�) for � 2 S1an embedded 
opy of M . Then the 
ow on the 
omplement is pre
isely theintegration along the gradient of the �bration � : S3 nK ! S1.Any periodi
 points of the monodromy � be
ome periodi
 orbits of the sus-pension 
ow whi
h 
oil about the base knot K in a manner determined by the�bration. The resulting 
olle
tion of knots was dubbed, by Birman and Williams[24℄, the planetary link for K with monodromy �: LK;�.Sin
e M is a surfa
e and � a di�eomorphism, one may invoke the Nielsen-Thurston 
lassi�
ation of surfa
e di�eomorphisms [178, 46℄:Theorem 2.3.11 (Nielsen [138℄, Thurston [177℄) A surfa
e di�eomorphism � :M !M is isotopi
 to a unique homeomorphism �̂ su
h that one of the followingholds:
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, i.e., �̂k = id for some k;2. �̂ is pseudo-Anosov (see below); or3. �̂ is redu
ible, i.e., there exists an invariant family C of disjoint simple
losed 
urves on M su
h that the restri
tion of � to the 
omplement of Cde
omposes into a �nite number of disjoint maps whi
h are either periodi
or pseudo-Anosov.We refer the reader to [46, 178℄ for pre
ise de�nitions of pseudo-Anosov maps.Su
h maps 
ome with a pair of transverse measured stable and unstable fo-liations, Fs and Fu, whi
h uniformly 
ontra
t and expand respe
tively underiteration of the map. As su
h, these maps have a natural hyperboli
 stru
tureasso
iated to them and have \
ompli
ated" dynami
s with a dense set of pe-riodi
 orbits. The uniqueness portion of Theorem 2.3.11 allows one to spe
ify\the" �bration of K, and, hen
e, \the" planetary link of K, denoted LK . Inaddition, a theorem of Asimov and Franks [13℄ implies that a pseudo-Anosovmap minimizes the dynami
s within its homotopy 
lass: the following fa
t is a
orollary.Theorem 2.3.12 (Asimov and Franks [13℄) If � is any monodromy asso
iatedto a �bred knot (or link) K with unique pseudo-Anosov representative �̂, thenthe link of planetary orbits LK � LK;�̂ is a proper sublink of LK;�.Thus, we 
onsider the unique link of planetary orbits LK as being the minimalsublink whi
h all monodromies ofK share. Birman and Williams [24℄ noted thatthe link LK is an invariant for K whi
h might provide interesting information.In their study of planetary links, they 
arefully 
onsidered the �gure-eight knot(see Figure 1.1(
)), whi
h is �bred with �bre a pun
tured torus and monodromyisotopi
 to the Anosov map of Example 1.2.7,�̂ = � 2 11 1 � ; (2.15)a
ting on the universal 
over R2 nZ2 [33, p. 73℄.Be
ause the pseudo-Anosov map �̂ satis�es the hyperboli
ity requirementsof Theorem 2.2.4, it is possible to 
ollapse the 
omplement of the �gure-eightknot down to a template. Birman and Williams, in [24℄, derive two templatesfor the �bration of the 
omplement of the �gure-eight knot (
orresponding to �̂)| one via dire
t visualization, and the other indire
tly by means of bran
hed
overings of S3: we re
all their templates in Figure 2.15.Of 
ourse, sin
e the map �̂ of Equation (2.15) is Anosov, the DA pro
essof x2.2.2 must be performed; hen
e, there may be two extraneous orbits on thetemplate not present in the original 
ow.Simple �bred knots and links in S3 often (if not always) give rise to very
ompli
ated templates supporting their planetary links. The Whitehead link,LW , displayed in Figure 2.16, is a �bred link with pseudo-Anosov monodromy.Using the te
hniques in [24℄, we have shown that the planetary link for LW issupported on the template illustrated in Figure 2.17.
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Figure 2.15: The \dire
t" and \indire
t" versions of the �gure-eight template.2.3.5 Templates from time seriesFinally, we 
onsider a 
lass of examples about whi
h little is known rigorously,but whi
h may have important appli
ations, parti
ularly for experimentalistsseeking geometri
al models of dynami
al pro
esses. Consider an experimentalmeasurement of a 
ontinuous s
alar variable whose dynami
al behavior is 
om-pli
ated: e.g., a temperature reading, a 
hemi
al 
on
entration, or a speed. Thedata is re
eived in the form of a time series: a fun
tion � : [0; T ℄! R, where Tis the length of the data segment (in units of time).Given a 
ompli
ated time series, one would wish (among other things) toextra
t the essentials of the underlying dynami
s. For example, 
onsider a typi
alorbit of the Lorenz system (Equation (2.1)), and let �(t) denote the proje
tionof this orbit onto one of the 
oordinates (see Figure 2.18). Over long periods,this might appear to be without 
oherent form; yet, given its origins, there is
ertainly stru
ture within the data. One is more suspi
ious of, say, the DowJones average, hiding some 
overt pattern.Typi
ally, one employs a variety of means for a

essing \hidden" dynami
alinformation within a time series: Fourier spe
tral 
ontent, statisti
al measures,fra
tal dimensions, and other tools provide 
ertain types of information, whileignoring other, more geometri
 data. Fortunately, a theorem of Takens [175℄suggests that one 
an often embed an attra
tor into a low-dimensional manifoldvia a \time delay" fun
tion, 
apturing the geometri
 and topologi
al properties:Theorem 2.3.13 (Takens [175℄) Let M be a 
ompa
t n-manifold with a C2-
ow �t and a C2-fun
tion � : M ! R1. Then, generi
ally, the time-delaymapping � :M ! R2n+1 de�ned by�(x) = (�(x); �(�1(x)); �(�2(x)); : : : ; �(�2n(x))) (2.16)



58 
hapter 2. templates

Figure 2.16: The Whitehead link LW .is an embedding.A topologi
al perspe
tive has been proposed by Mindlin, Solari, Gilmore,Tu�llaro, et al. [128℄ (
f. [180℄), in whi
h knot and link types of periodi
 orbitsin the embedded 
ow are 
omputed and related to a template. We outline thepro
edure detailed in [128℄.1. Given a \
haoti
" time series �(t), extra
t a �nite 
olle
tion of low-periodunstable periodi
 orbits, f
igN1 . This is done by examining \
lose returns"within the data, whi
h are assumed to wander ba
k and forth among manyunstable periodi
 orbits. The low-period orbits are easiest to spot.2. Map the time series into R3 via the (Takens) time-delay fun
tion, andassume that it is an embedding. There are several ways to realize this viadi�erent \�lters" of the data. Clearly, this may not be possible in general:for su

ess, orbits must appear to lie on a topologi
ally two-dimensionalattra
tor.3. Consider the (small) 
olle
tion f
ig of low-period unstable periodi
 orbits
omputed in step (1). Embed these in R3 as per the embedding of step(2). Cal
ulate their knot types, linking numbers, and self-linking numbers(i.e., twisting of the stable/unstable bundles). These form a basis for theindu
ed template.4. Let T� denote the \simplest" template in R3 whi
h 
ontains the basis f
ig.For example, if a global 
ross se
tion to the 
ow exists, T� is a template
onsisting of one bran
h line su
h that ea
h 
i lives on T� and 
rosses thebran
h line the same number of times as the period of 
i in the return mapof the 
ow. The knot types, linking numbers, and self-linking numbers tellone how the strips of T�, ea
h of whi
h 
ontains at least one 
i, are knotted,linked, and twisted, respe
tively.
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Figure 2.17: The Whitehead template.After produ
ing the indu
ed template T� for the data set �, one may nowpro
eed to verify that the template T� provides an a

urate model of the dy-nami
s. This 
an be done in a number of ways: e.g., �nd higher-period orbits inthe data set and 
on�rm that these live in T� with the appropriate embedding,or take another data set, �0, and 
ompute an indu
ed template for this set.When the indu
ed template 
onstru
tion is su

essful, there are a numberof bene�ts both to the experimentalist and to the theorist hoping to model theexperiment from whi
h it derives. First, an indu
ed template o�ers a 
ertaindegree of predi
tion | one may identify a periodi
 orbit in the template, thengo \hunting" for it in the data set. A su

essful example of this is do
umentedin [128℄. Se
ondly, one may verify models of the system. Should one model theexperimental system with a set of ODEs, one takes a time series of the ODEsolution and 
onstru
ts the indu
ed template for this data set. If the indu
edtemplate for the model di�ers from the indu
ed template for the experiment,this may indi
ate a short
oming in the model.There are, however, serious questions 
on
erning this approa
h. Experimen-tal systems are rarely three-dimensional and hyperboli
; hen
e, the use of tem-plates to model them is, at the very least, suspe
t. In addition, the only guidingprin
ipal behind the 
hoi
e of the indu
ed template is O

am's Razor. As su
h,it is not surprising that many of the indu
ed templates 
omputed in pra
ti
eare isotopi
 to the horseshoe template, L(0; 1), or its mirror image [128, 180℄
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Figure 2.18: A time series derived from the Lorenz equations.(though see [106℄ for an ex
eption).These doubts notwithstanding, there are numerous open questions about theuse of indu
ed templates for time series, whose answers 
ould be of great valueto experimentalists and modelers of 
ompli
ated dynami
s.2.4 A symboli
 languageMu
h of this book is 
on
erned with templates and the links they 
arry. Toanalyze these, it is often useful to extra
t subtemplates, or subsets whi
h arethemselves templates (see De�nition 2.4.6). In the late eighties, one of us [MS℄noti
ed that the template V , illustrated in Figure 2.21 below, 
ontains a sub-template whi
h is isotopi
 to itself: see Figure 2.22 (this was used to show theexisten
e of highly-
omposite knots on V [169℄). In this se
tion, we introdu
e
onventions for symboli
 des
riptions of orbits and templates, whi
h enables usto signi�
antly generalize this kind of pro
edure to 
ases in whi
h dire
t visual-ization is not possible.2.4.1 Markov stru
tures and symboli
 
oordinatesRe
all from the proof of the Template Theorem in x2.2 that there is a natural
orresponden
e between orbits whi
h remain on a template and one-sided symbol
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 language 61sequen
es in a subshift of �nite type: in parti
ular, following upon Remark 2.2.8,we haveLemma 2.4.1 Given a template T , label the strips fxi : i = 1::Ng. Let AT bean N�N matrix with entry AT (i; j) = 1 if the in
oming portion of xi meets theoutgoing portion of xj at a bran
h line, zero otherwise. Then �T , the set of allforward orbits whi
h remain on T , is pre
isely the set of admissible sequen
es inthe subshift of �nite type given by AT .Proof: See the proof of Theorem 2.2.4, or simply 
ollapse T along the transversedire
tion of the semi
ow, redu
ing T to an oriented graph. Then the orbits onT are one-sided dire
ted paths on this graph: 
f. Remark 1.2.22. 2The way in whi
h orbits �t together on a template T is des
ribed by pla
inga 
oordinate system on the bran
h lines f`j : j = 1::Mg, following the kneadingtheory of x1.2.3, and spe
ifying the indu
ed 
oordinates on �T . This orderingof orbits on a template is a key ingredient in dis
erning the relative pla
ementof orbits on a template whi
h might be too 
ompli
ated to visualize.De�nition 2.4.2 Let T be a template with strips labeled fxigN1 . Denote byf`jgM1 the bran
h lines of T (one for ea
h bran
h line 
hart). Then �T ispartitioned into N bran
h segments, denoted f�i(T )gN1 , where�i(T ) � fa = a0a1a2 : : : 2 �T : a0 = xig : (2.17)Denote by �`j � �T the union of �i(T ) over all i su
h that the strip xi emanatesfrom the bran
h line `j . We will sometimes refer to the union of the �i(T ) asthe bran
h set, denoted �(T ).Proposition 2.4.3 There exists a total ordering � on ea
h �`j whi
h respe
tsthe topology of �`j : that is, if a�b and fang is a sequen
e 
onverging to a then,for suÆ
iently large n, an�b.Proof: This follows from the kneading theory [125℄, as outlined in x1.2.3. We
onstru
t � expli
itly in what follows, and it will be seen to have the followingproperty: � is the total ordering indu
ed by the one-dimensionality of `j . Thatis, any point of an `j is an orbit whi
h \begins" on `j . Orienting `j yields a totalorder on �`j whi
h respe
ts the topology. 2For the moment, assume T is an orientable template. Ea
h bran
h line `j isone-dimensional. Hen
e, the set of bran
h segments in ea
h `j are ordered (upto orientation of `j). If, for example, the bran
h segments x1; x2; : : : ; xp lie in `1in this order, then 
hoose � as eitherx1 � x2 � : : :� xp; or xp � : : :� x2 � x1: (2.18)Having 
hosen an orientation for ea
h `j , one then orders ea
h �`j lexi
ograph-i
ally with respe
t to the ordering on the generators fxig. That is, given a andb 2 �`j , let J equal the index of the �rst symbol in whi
h a and b disagree:J = min fj : aj 6= bjg : (2.19)
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ourse, one 
annot 
ompare points in di�erent�`j : there is no notion of orientation for points on disjoint bran
h lines. Sin
eT is orientable, the lexi
ographi
al ordering of itineraries 
orresponds to theordering on the bran
h lines and it yields a natural 
oordinate system.For nonorientable templates, the issue is no more diÆ
ult, but it does demandmore bookkeeping. If a parti
ular strip, say xj , 
ontains an odd number of half-twists (i.e., the return map is orientation reversing on that interval), then onemust keep tra
k of the parity of that symbol in using � as in the invariant
oordinate 
onstru
tion for the one-dimensional map fT of x1.2.3.Spe
i�
ally, given a nonorientable template T , 
onstru
t a provisional order-ing ~� as for an orientable template indu
ed by the ordering on the individualbran
h lines (as above). This ordering ~� does not, however give an orderingon T whi
h respe
ts the topology of the bran
h lines. Now, given some pla-nar presentation of T (a pi
torial representation in whi
h all the bran
h lineslie within the plane), ea
h strip xi will have �(xi) half-twists for some signedinteger �(xi). Partition the strips fxig a

ording to those whi
h are orientationpreserving (�(xi) even) and those whi
h are orientation reversing (�(xi) odd).Note that this partition depends on the 
hoi
e of planar representation, and, inpra
ti
e, one wants to 
hoose as simple a presentation as possible. Given pointsa and b in �`j , de�ne J as in Equation (2.19), and 
onsider the parity � 2 f0; 1gwhi
h keeps tra
k of orientation� �  J�1Xi=0 �(ai)! mod 2: (2.20)Then de�ne the ordering � on �`j in terms of the provisional ordering ~� by� = 0 : a� b, a~�b� = 1 : b� a, a~�b:This ordering � re
e
ts the \physi
al" ordering of orbits on the nonorientabletemplate T . It is 
lear that this pro
edure 
an be easily implemented on a
omputer.Equipped with the ordering �, we 
an treat �T as being embedded in a�nite disjoint union of one-dimensional segments (although �T is really a Cantorset). As su
h, we will introdu
e some notation for bran
h segments. Re
all fromDe�nition 2.4.2 that �T partitions intoN bran
h segments, where �i(T ) denotesall itineraries beginning with xi. Sin
e this geometri
ally represents all orbitswhi
h begin at the xi-strip, we will 
onsider �i(T ) as a 
losed interval, re
e
tingthe total ordering �:De�nition 2.4.4 Given T a template with strips fxigN1 and bran
h set �(T ),let the ith-left-boundary, �ì (T ), be the point of �i(T ) whi
h is �-minimal. Sim-ilarly, let the ith-right-boundary, �ri (T ) , be the point of �i(T ) whi
h is �-maximal. The boundary set, �(T ), is given as the union of f�ì (T ); �ri (T )g overi.
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 language 63It is 
lear that �(T ) 
onsists of the 2N eventually periodi
 orbits whi
h together
omprise the boundary of the template.Remark 2.4.5 In 
ows whose templates have a single bran
h line, 
orrespond-ing to a global 
ross se
tion, it is natural to identify the period of a 
losed orbitwith the number of interse
tions with the bran
h line. Often, this 
oin
ideswith the number of strands in a 
losed braid representation. In the more general
ontext of the present work, we identify the period of an orbit with the numberof interse
tions of the orbit with all bran
h lines (hen
e, the period of the orbitfor the return map indu
ed by the bran
h lines). In all 
ases it 
oin
ides withthe length of the periodi
ally repeating blo
k in the 
orresponding orbit word.We will thus sometimes refer to this blo
k length as the symboli
 period.For a given template T , the symboli
 data; �T ; AT ; �(T ); �(T ), and �,en
ode the dynami
s and the 
ombinatorial stru
ture of the template. They donot, however, spe
ify the topology of the en
losed orbits, nor do they provideinvariants of the underlying link LT , sin
e one may 
hange the embedding ofT without altering the symboli
 data. Conversely, we may re�ne the Markovpartition (i.e., in
rease the number of bran
h segments) without dis
arding anyorbits from the template: see Figure 2.19 for an example. Even so, these symboli
tools do be
ome useful in des
ribing proper in�nite sublinks and in des
ribingthe relative pla
ement of 
ompli
ated orbits.
Figure 2.19: Two templates whi
h 
arry the same dynami
s and topology onthe periodi
 orbits, but whi
h have di�erent symboli
 stru
tures.2.4.2 Subtemplates and template in
ationsIn the study of templates and their properties, there are varying \s
ales" at whi
hone may 
hoose to work. Often, the knowledge of whi
h types of individual knotsor links appear on a given template is useful: this is a \small s
ale" question.For example, in x4.2, we will see how 
areful bounds on the genus of individualhorseshoe knots 
an be used to derive uniqueness and bifur
ation results in afamily of H�enon maps. On the other hand, one might ask \large s
ale" questionsabout whether two entire templates (in
luding all their orbits) are equivalent.This perspe
tive will 
ome into play in Chapter 5. Here, however, we fo
us on
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hapter 2. templatesa \medium" s
ale question: we examine subsets of orbits whi
h are proper yetnon-�nite. These are des
ribed via the notion of subtemplates.De�nitions and examplesDe�nition 2.4.6 A subtemplate S of a template T , written S � T , is a topo-logi
al subset of T whi
h, equipped with the restri
tion of the semi
ow of T toS, satis�es the de�nition of a template (De�nition 2.2.1).A subtemplate is thus a 
ompa
t bran
hed submanifold with boundary, for whi
hthe original semi
ow restri
ts to an expanding semi
ow.Example 2.4.7 An example of a subtemplate of the Lorenz template is givenin Figure 2.20. When we \
ut" along the boundaries of the subtemplate S �L(0; 0), we 
an remove S and isotope it into the ni
e presentation of Fig-ure 2.20(
). The move from part (b) to part (
) is one that we will en
ounteroften in the remainder of this work: it is the so-
alled belt tri
k, in whi
h a 
urlis ex
hanged for a full twist.
(a) (b)

(
)Figure 2.20: (a) a subtemplate S within L(0; 0), (b) when removed from L(0; 0),(
) is isotopi
 to L(0; 2).Note that S is a very spe
ial subtemplate of L(0; 0) in that S is di�eomorphi
to L(0; 0) (it is in fa
t isotopi
 to L(0; 2) | re
all Figure 2.8(a)). Although thisis not always the 
ase, a di�eomorphi
 relationship between a template and asubtemplate opens up a new set of obje
ts.De�nition 2.4.8 A template renormalization of a template T is a smooth em-bedding R : T ,! T whi
h respe
ts orbits (i.e., it 
ommutes with the semi
ow).



2.4. a symboli
 language 65It follows from De�nition 2.4.6 that the image of a template renormalizationR(T ) is a subtemplate of T whi
h is di�eomorphi
 to T . Returning to Example2.4.7, the subtemplate S � L(0; 0) is the image of a template renormalizationR : L(0; 0) ,! L(0; 0).The terminology for De�nition 2.4.8 arises from the one-dimensional returnmaps for a template indu
ed by the bran
h lines [47℄. The image of a templaterenormalization is merely a renormalization of the return maps, suspended ina

ordan
e with the template stru
ture. We prefer, however, to think in terms ofrenormalizing the bran
hed two-manifold itself, sin
e template renormalizations
arry with them the topology of the periodi
 orbits as well.Sin
e a template renormalization R a
ts on orbits of T di�eomorphi
ally, Rmaps periodi
 orbits to periodi
 orbits: hen
e, there is a topologi
al a
tion on theunderlying link LT . When this a
tion is trivial, we say that the renormalizationis isotopi
.De�nition 2.4.9 Let R : T ,! T be a renormalization on an embedded tem-plate T � S3 and let iT denote the in
lusion of T into S3. If iT and iT ÆR areisotopi
 embeddings of T in S3, then R is an isotopi
 renormalization.The existen
e of a template renormalization immediately allows one to iterateR on the renormalized subtemplate. This pro
edure enables one to extra
t very\deep" subtemplates, whi
h may 
ontain signi�
ant information about the peri-odi
 orbit link. When the renormalization has trivial a
tion on the topology ofthe underlying periodi
 orbit link, we may iterate to obtain 
ompli
ated subtem-plates whose orbits have extremely long symboli
 period, while still 
ontrollingthe individual knot and link types.
x1 x2
x3 x4Figure 2.21: The template V .Example 2.4.10 The �rst example of an isotopi
 template renormalization(without that terminology) was given by M. Sullivan [169℄. Let V denote the
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hapter 2. templatesembedded template of Figure 2.21, having two bran
h lines with a total of fourstrips, fx1; x2; x3; x4g. The template V is embedded su
h that none of its stripsare knotted or twisted, but note that it 
ontains 
rossings of both positive andnegative types. The renormalization taking V into itself is illustrated in Fig-ure 2.22, from whi
h it is 
lear that the image is isotopi
 to the domain, for thepositive and negative twists produ
ed by the belt tri
k exa
tly 
an
el.

Figure 2.22: An isotopi
 template renormalization on V .Thus far, a template renormalization embeds a template within itself, andany subtemplate whi
h is di�eomorphi
 to its domain 
an be des
ribed by arenormalization. However, a given template may 
ontain numerous subtemplateswhi
h are dynami
ally as well as topologi
ally distin
t from the original, just asone-dimensional maps may 
ontain di�erent maps embedded deep within. Thisphenomenon in 1-d maps leads to the study of renormalizations between 
lassesof maps [73℄. We wish to generalize template renormalizations in a similarmanner.De�nition 2.4.11 A template in
ation is a smooth embedding R : S ,! T of atemplate S into a template T whi
h respe
ts orbits (i.e., it 
ommutes with thesemi
ow).It follows from De�nition 2.4.6 that the image of a template in
ation R(S) isa subtemplate of T . A template renormalization is a spe
ial form of a template
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 language 67in
ation, and we will often use the more general term. The analogous notion ofan isotopi
 template in
ation follows:De�nition 2.4.12 Let R : S ,! T be an in
ation of a template S � S3 into atemplate T � S3. Let iS and iT denote in
lusion of S and T respe
tively intoS3. If iS and iT ÆR are isotopi
 embeddings of S in S3, then R is an isotopi
in
ation.There are many basi
 questions about subtemplates and template in
ations,e.g.:Problem 2.4.13 Given a template T , whi
h templates embed [abstra
tly℄ inT (i.e., whi
h are images of in
ations)? Given an embedded template T , whatare all the subtemplates of T (i.e., whi
h are images of isotopi
 in
ations)?We will obtain in x3.3 the surprising answer that all orientable templates em-bed in any T (after a slight perturbation at the bran
h lines). Furthermore,we will show that 
ertain templates 
ontain isotopi
 
opies of all templates assubtemplates.The goal of working with template in
ations is to understand properties ofdeep, 
ompli
ated subtemplates within a given template. To that end, isotopi
in
ations are useful, in that we 
an keep tra
k of the knots and links whi
hlive \deep within" a template by pulling ba
k the isotopy. To keep tra
k ofwhere exa
tly these 
ompli
ated subtemplates lie, we use the indu
ed a
tionof an in
ation on the itinerary spa
e in order to derive \
oordinates" for asubtemplate asso
iated to a given in
ation.Symboli
 a
tions of in
ationsLemma 2.4.14 A template in
ation R : S ,! T indu
es an embedding R :�S ,! �T whose a
tion is to in
ate ea
h symbol fxi : i = 1::Mg of �S to a�nite admissible word fwi = w1 : : : wn(i) : i = 1::Ng in the symbols of �T .Proof: by De�nition 2.4.11, R maps the bran
h lines of S into bran
h lines ofT . Hen
e, ea
h strip of S (
orresponding to a generator xi of �S) is mapped toa �nite sequen
e of strips in T , 
orresponding to a �nite admissible itinerary forT . 2The image under R of any orbit on S is thus obtained by \in
ating" ea
hsymbol xi in the itinerary by the word wi (whi
h in some 
ases may 
onsist ofa single letter). This immediately implies the following useful result:Corollary 2.4.15 Given R : S ,! T a template in
ation, the bran
h set andthe boundary of the subtemplate R(S) are given by�i(R(S)) = R(�i(S)) = fR(a); a 2 �i(S)g�(R(S)) = R(�(S)) = fR(a); a 2 �(S)g : (2.21)
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onsider the bran
h set �(R(S)) as a set of \
oordinates" 
onsistingof N \subintervals" of the bran
h set of T whi
h indi
ate where S resides withinT . We note that the image of a bran
h segment under an in
ation is not aninterval in the sense that all orbits between its endpoints are not ne
essarilypart of the subtemplate (re
all there are \gaps" in the bran
h lines). Yet, if we
onsider the N subintervals given by �(R(S)), we have a relative measure of thedepth of an in
ation. For example, if a template T 
ontains a nested sequen
eof subtemplates Tn � : : : � T2 � T1 � T , then the same in
lusion exists on thebran
h sets �(Ti) within �(T ). Or, given two subtemplates of T , the informationen
oded in their symboli
 bran
h sets 
an be used to determine whether thesesubtemplates are disjoint, or whi
h subtemplate is \
loser" (under �) to a givenperiodi
 orbit.Example 2.4.16 For an example whi
h will demonstrate the symboli
 a
tionsof an isotopi
 in
ation, we return to the isotopi
 renormalization of V fromExample 2.4.10. From Figure 2.22, one tra
es the image of the four stripsfx1; x2; x3; x4g to obtain the symboli
 a
tion:D : V ,! V 8>><>>: x1 7! x1x2 7! x1x2x3 7! x3x4 7! x3x4 : (2.22)The bran
h segments of the subtemplate are given by�1(D(V)) = D ([(x1)1 ; x1 (x2x4)1℄) = [(x1)1 ; x1 (x1x2x3x4)1℄�2(D(V)) = D ([x2 (x3)1 ; (x2x4)1℄) = [x1x2 (x3)1 ; (x1x2x3x4)1℄�3(D(V)) = D ([(x3)1 ; x3 (x4x2)1℄) = [(x3)1 ; x3 (x3x4x1x2)1℄ (2.23)�4(D(V)) = D ([x4 (x1)1 ; (x4x2)1℄) = [x3x4 (x1)1 ; (x3x4x1x2)1℄ :The boundary 
omponents of the subtemplate, �(D(V)), are given by the end-points of the intervals above.We en
ourage the reader to work through this example 
arefully, 
orrelatingthe geometri
 des
ription of Figure 2.22 with the symboli
 des
ription of Equa-tion (2.22). This pro
edure is used extensively in Chapter 3.Unfortunately, one 
annot endow the symboli
 stru
ture with very mu
hinformation about the topology of the in�nite link. However, the hyperboli
ityof the underlying 
ow does give a ni
e stru
ture to the spa
e �T whi
h we hopeto utilize as mu
h as possible. By looking at the ordering � and by 
onsideringthe relationship between iterated subtemplates and their \
oordinates" in termsof bran
h sets, we have a set of tools for des
ribing and manipulating \deep"sublinks of the link of periodi
 orbits. We will use these in the next 
hapter toprove some basi
, as well as some surprising, results.



Chapter 3: Template TheoryIn this 
hapter, we use the tools of Chapter 2 to build a 
olle
tion of generalresults on templates and template links, noting appli
ations to the dynami
sof three-dimensional 
ows along the way. We begin in x3.1 with a treatmentof properties of the individual knots and links whi
h are supported on a givenembedded template. Then, in x3.2, we use the methods developed in x3.1 and theprevious 
hapter to prove the existen
e (and abundan
e) of universal templates:templates whi
h 
ontain all knots and links among their 
losed orbits. Inx3.3, we 
ontinue this line of inquiry to examine the subtemplate problem: theenumeration of all subtemplates of a given embedded template.These results, whi
h are fairly general in nature, will lead to numerous spe
i�

on
lusions in this and in subsequent 
hapters when applied to the examplesintrodu
ed in x2.3.3.1 Knotted orbits on templatesQuestion 1 Given an embedded template T , does it 
ontain a nontrivial knot?How many su
h knots are present? How are these distributed?In this se
tion, we will answer Question 1, giving appli
ations to the dynami
sof 
ows.3.1.1 Alexander's Theorem for templatesIn many of the results to follow, we will need to represent template knots andlinks as 
losed braids. We begin with an analogue of braiding for templates:De�nition 3.1.1 A template T is said to be braided if T is embedded inD2�S1in su
h a way that every 
losed orbit on T is a 
losed braid: that is, ea
hmeridional dis
 D2 � f�g interse
ts the 
urve transversely in a �xed number ofpoints. A template is said to be positive if it 
an be braided in su
h a way thatevery 
losed orbit is a 
losed positive braid.Re
all Alexander's Theorem (Theorem 1.1.13), whi
h states that any link isisotopi
 to a 
losed braid. The 
orresponding statement for templates is alsotrue, as shown by Franks and Williams [58℄.Theorem 3.1.2 (The Alexander Template Theorem: Franks andWilliams[58℄) Any template T may be isotoped so that it is a 
losed braided template.Furthermore, if T is orientable, it may be arranged su
h that in a planar pro-je
tion, all the strips of T are 
at (untwisted).69
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hapter 3. template theoryThe proof 
losely follows that of Alexander's Theorem for links [3℄: a ni
e a

ountof the latter 
an be found in [33, Prop. 2.14℄. In the proof of Alexander'sTheorem, one 
hooses a tenative braid axis, and then iteratively \
ips" strandsof the link about the braid axis until they are all aligned. Here, instead ofwrapping strands about a braid axis, one manipulates strips. To obtain a 
atpresentation, one uses the belt tri
k of Example 2.4.7 to ex
hange a full twist foran additional trip about the braid axis. Half twists, whi
h arise in non-orientabletemplates, of 
ourse 
annot be straightened.3.1.2 Con
atenation of template knotsGiven two periodi
 points of �`j { the set of all orbits starting on the bran
hline `j { we wish to de�ne an \addition" operation whi
h has both symboli
 andtopologi
al interpretations.De�nition 3.1.3 Let a1 and b1 be distin
t periodi
 points of �`j . Then the
on
atenation of a1 and b1, denoted a1 � b1, is the point (ab)1 2 �`j .Remark 3.1.4 The 
on
atenation operation is well-de�ned: sin
e a1 and b1are both points on a parti
ular bran
h line `j , the orbit (ab)1 must be admis-sible. Note, however, that ab may equal uk for k > 1 and some u, as in x21x2x1
on
atenated with x1x2. In this 
ase, we would say �x21x2x1�1 � (x1x2)1 =�x21x2�1.Given the 
on
atenation operation, we wish to understand the topologi
al a
tionon periodi
 orbits. We begin with a 
lass of 
on
atenations whi
h behave ni
ely.De�nition 3.1.5 Choose two distin
t points u and v 2 �`j and assume thatu�v. De�ne (u;v) to be the set of all point x 2 �`j su
h that u�x�v. Thenu and v are said to be adja
ent if,��ku	k>0 \ (u;v) = ��kv	k>0 \ (u;v) = ;: (3.1)Thus, u and v are adja
ent if no other points on their orbits appear between uand v.In order to simplify the next few results, we 
ir
umvent the ex
eptional 
asesof Remark 3.1.4:Lemma 3.1.6 If a and b are distin
t nontrivial words and ab = uk for k > 1and some u, then a1 and b1 are not adja
ent.Proof: De
ompose a = uia0 and b = b0uj , where i + j = k � 1 and a0b0 = u.Assuming (arbitrarily) that a�b and that i > 0, 
onsider the point �ui�1a0u�1,whi
h is a shift of a1. Then, sin
e a1 � u1 � b1, it follows thata1 � �ui�1a0u�1 � u1 � b1; (3.2)when
e it follows that a1 and b1 are not adja
ent. 2The 
on
atenation of adja
ent orbits is similar in spirit to taking a 
onne
tedsum: only one 
rossing is added.



3.1. knotted orbits on templates 71Lemma 3.1.7 Let T be an embedded template, and let a1 and b1 be adja
entperiodi
 points in �`j . The planar presentation of the knot 
orresponding toa1 � b1 di�ers from that of the link 
orresponding to a1 union b1 by theaddition of a single 
rossing (as illustrated in Figure 3.1).Proof: Pla
e T in a planar presentation and 
onsider the bran
h line `j whi
h
ontains the points a1�b1. By isotoping T if ne
essary, a neighborhood of `jwill appear lo
ally as in Figure 3.1(a) { there are two 
ases depending on whi
hstrip is \on top." By properties of the ordering �, it follows thata1 � (ab)1 � (ba)1 � b1; (3.3)so that the 
on
atenated orbit appears as in Figure 3.1(b): there is a new 
rossingwhose sign is dependent upon the sta
king order of strips. The orbit (ab)1follows a then b: the ordering of points on other bran
h lines does not 
hange.More spe
i�
ally, if, on any bran
h line, ��ia�1 � ��ja�1, then it follows that��i(ab)�1 � ��j(ab)�1 for any i; j < jaj. Hen
e, a1 � b1 may be isotopedto the link a1 union b1 with a single 
rossing inserted at the bran
h line asspe
i�ed. 2
a1 b1 (ba)1(ab)1
a1 b1 (ba)1(ab)1(a) (b)Figure 3.1: Con
atenation of adja
ent periodi
 points e�e
ts a lo
al 
hange asabove.Lemma 3.1.7 immediately yields:
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hapter 3. template theoryCorollary 3.1.8 Let T be an embedded template, and let a1 and b1 be ad-ja
ent periodi
 points in �`j with self-
rossing numbers 
a and 
b respe
tively.Then, the self-
rossing number of the 
on
atenation a1 � b1 is given by
a�b = 
a + 
b + 2`k (a1;b1) + �; (3.4)where � = �1, depending upon a1;b1; and T , is the sign of the 
rossing ofLemma 3.1.7.De�nition 3.1.9 The twist of a ribbon (annulus or M�obius strip) in S3 with
 
rossings and t signed half-twists (in a given planar presentation) is given as
 + 12 t and is an isotopy invariant (see Lemma 5.3.4 for a proof). Given K a
losed orbit on a template T , the twist of K, �K , is de�ned to be the twist of thenormal bundle of T restri
ted to K. That is, the bundle of normal dire
tions toT along K is an embedded ribbon in S3 with twist �K . Equivalently, this ribbonis the lo
al stable manifold to the orbit.Corollary 3.1.10 Let T be an embedded template, and let a1 and b1 be adja-
ent periodi
 points in �`j . Then the twist of the 
on
atenated knot 
orrespondingto the point a1 � b1 is given by�(a1 � b1) = �(a1) + �(b1) + 2`k (a1;b1) + �; (3.5)where � = �1; depending upon a;b, and T .Proof: Apply Lemma 3.1.7 to De�nition 3.1.9. 2Corollary 3.1.11 Let T be an embedded positive template, and let a1 and b1be adja
ent periodi
 points in �`j for some j. Then the genus of the 
on
atenatedknot 
orresponding to the point a1 � b1 is bounded below asg(a1 � b1) � g(a1) + g(b1): (3.6)Proof: Arrange T as a braided template with all 
rossings positive. Via Equation(1.3), the genera of the knots 
orresponding to a1 and b1 are, respe
tively,g(a1) = 
a �Na + 12 ; g(b1) = 
b �Nb + 12 ; (3.7)where 
 denotes number of 
rossings and N denotes number of strands. The
on
atenated knot a1 � b1 has Na +Nb strands in its braid presentation, andit has 
rossing number given by Equation (3.4). Thus,g(a1 � b1) = 
a + 
b + 2`k (a1;b1) + �� (Na +Nb) + 12= g(a1) + g(b1) + 2`k (a1;b1)� 1 + �2 : (3.8)
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e all 
rossings are positive prior to and after 
on
atenation, `k (a1;b1) � 0.If � = �1, then in 
on
atenation we have removed a (positive) 
rossing; thus,for � = �1, `k (a1;b1) > 0 prior to 
on
atenation, and the result follows. For� = +1, it is obviously true. 2Corollary 3.1.11 gives a partial answer to a generalization of a 
onje
ture ofWilliams's:Conje
ture 3.1.12 Let T be a positive embedded template. Let a1 and b1 beperiodi
 itineraries in �`j (not ne
essarily adja
ent). Then, genus is monotoni
under the � operation:1 g((ab)1) � g(a1) + g(b1): (3.9)We will use the � operation in the next subse
tion, when we des
ribe where ona template knots live.3.1.3 The existen
e of knots on a templateTheorem 3.1.13 Given an embedded template T , there exists a nontrivial knotas an orbit on T .Proof: Our proof is in the spirit of Proposition 4.4 of [58℄, in that we rely uponthe Bennequin inequality.2 Arrange T as a braided template as per Theorem3.1.2. Choose a1 and b1 in some bran
h set 
omponent �`j with a1 and b1adja
ent. Assume that the twist of a1 or b1 is nonzero. If not, then repla
ea1 with a1 � b1. By Corollary 3.1.10, the twist of the 
on
atenated knot isnonzero and this orbit is still adja
ent to b1.Given a1 and b1 with �(a1) 6= 0, 
on
atenate repeatedly to form the orbit(anb)1 = a1 � (a1 � (� � � (a1 � b1) � � �)): (3.10)We will use the Bennequin inequality, Equation (1.5), to bound the genus of thisknot. By Corollary 3.1.8, the self-
rossing number of (anb)1 is
anb = 
an2 + 12 tan(n� 1) + 
b + (2`k (a1;b1) + �)n; (3.11)where 
a (resp. 
b) is the self-
rossing number of a1 (resp. b1), ta is the signednumber of half-twists in the presentation of the embedded normal bundle of a1,and � = �1. See Figure 3.2 for the 
ount of the terms quadrati
 in n. ByEquation (1.5),2g((anb)1) � ��
an2 + 12 tan(n� 1) + 
b + (2`k (a1;b1) + �)n���(nNa +Nb) + 1 ; (3.12)1An ex
eption o

urs as in Remark 3.1.4, whi
h we 
ould 
ir
umvent by de�ning the genusof �uk�1 to be k times the genus of u1.2It is an open (and 
hallenging) problem to prove this theorem without resorting to Ben-nequin's inequality.
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e the twist �a 6= 0, 
a + 12 ta 6= 0; hen
e, 
anb is quadrati
 in n as per (3.11).Thus, for some n, the genus of (anb)1 is nonzero. 2k k j
(a) (b)Figure 3.2: (a) ea
h half-twist on k-strands yields 12k(k � 1) 
rossings; (b) ea
h
rossing of k-strands over j-strands yields kj 
rossings.Corollary 3.1.14 Given an embedded template T , there exists an in�nite num-ber of distin
t knot types as orbits on T .Proof: Let n!1 above. 2From this, we may re
over the Franks-Williams Theorem for 
ows on S3:Theorem 3.1.15 (Franks and Williams [58℄) Any C2-
ow on S3 whi
h haspositive topologi
al entropy must display an in�nite number of distin
t knot typesas 
losed orbits.Proof: By a [deep℄ theorem of Katok [97℄, a C2 
ow with positive topologi
alentropy must 
ontain a hyperboli
 periodi
 orbit whi
h has a transverse homo-
lini
 
onne
tion. The Poin
ar�e-Birkho�-Smale Theorem, Theorem 1.2.33, thenasserts the existen
e of an embedded Smale horseshoe in the 
ow. By the Tem-plate Theorem, this basi
 set 
ollapses to an embedded template in S3 whi
h
aptures knot and link types. This template, and hen
e the 
ow, supports anin�nite number of knot types by Corollary 3.1.14. 2Remark 3.1.16 Theorem 3.1.15 is a beautiful result, yielding a great deal oftopologi
al information from purely dynami
al data. The 
onne
tion is thusestablished: dynami
ally 
ompli
ated hyperboli
 
ows on S3 for
e topologi
ally
ompli
ated knots as orbits. Several 
onverses exist: for an example, see the



3.1. knotted orbits on templates 75Morgan-Wada Theorem in Appendix A. Another well-known 
onverse is theSeifert Conje
ture, re
ently resolved in the smooth 
ase by K. Kuperberg [107℄.This result states that there exist smooth nonsingular 
ows on S3 
ontaining noperiodi
 orbits whatsoever.From Theorem 3.1.13 we may also derive information about how knots aredistributed on �T . We show that the nontrivial knots do not 
on�ne themselvesto any proper subregion.Corollary 3.1.17 Let T be an irredu
ible template | that is, the subshift of�nite type de�ned on �T has a dense orbit. Then, given any point x in �T , thereexists an in�nite number of distin
t knot types represented in an arbitrarily smallneighborhood of x.Proof: Choose a small �-neighborhood N� of x in �T and pi
k two distin
tperiodi
 points a1 and b1 2 N� (this is always possible sin
e the periodi
points are dense in �T for T irredu
ible). If ne
essary, shift b1 to be adja
entto a1 | this does not remove it from N�. Consider the template in
ationR : L(�a; �b) ,! T � x1 7! ax2 7! b ; (3.13)where �a (�b resp.) is the twist of a1 (b1 resp.) and L(m;n) is the Lorenz-liketemplate of type (m;n) (see x2.3.1). This in
ation is well-de�ned sin
e a1 andb1 are adja
ent. The image of R has bran
h set�fR(L(�a; �b))g = 8<: [a1;b1℄ : �a; �b even[a1;ba1℄ : �a even ; �b odd[ab1;ba1℄ : �a; �b odd ; (3.14)whi
h is 
ontained within a 2�-neighborhood of a1. By Corollary 3.1.14, thissubtemplate 
ontains an in�nite set of distin
t knot types. 2Remark 3.1.18 Any template obtained from a basi
 set of a 
ow is irredu
ible,sin
e basi
 sets have dense orbits. A non-irredu
ible template is, from our per-spe
tive, an anomaly.3.1.4 A

umulations of knotsKnowing that knot types are \densely pa
ked" on any given template says noth-ing about their pre
ise distribution. What are the 
han
es of a �gure-eight knotliving arbitrarily 
lose to a trefoil? To an unknot? To answer this (in part), wewill explore the spe
ial role played by unknots with zero twist.Proposition 3.1.19 Let T be an embedded template. Suppose that some pointu1 2 �`j represents an unknotted periodi
 orbit with zero twist. Then, forevery periodi
 point a1 in �`j su
h that a1 and u1 are separable, there existin�nitely many periodi
 points in �`j whi
h have the same knot type as a1, andthese a

umulate onto u1.
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ent. We 
laimthat the 
on
atenation u1 � a1 = (ua)1 is the 
onne
ted sum of the twooriginal knots.Sin
e a1 and u1 represent separable knots, there is a 2-sphere S2 whi
hbounds the knots on opposite sides. By pla
ing the sphere in general position,we may assume that S2 interse
ts the template T transversally. Denote by Ithe subset of the bran
h line `j whi
h is bounded by the points u1 and a1.Let N � S3 denote a tubular neighborhood of u1 [ I [ a1 in S3. We
laim that N \ T is isotopi
 to the 
on�guration of Figure 3.3. To show this,note that the spa
e S3 n N is isotopi
 to a solid torus (the 
omplement of theunknot u1) with an interior solid torus removed (a neighborhood of the knota1) and a (perhaps knotted) hole 
onne
ting the boundaries of these solid tori,
orresponding to the ar
 I . Sin
e a1 and u1 are separable, the solid torus holein inessential (it is 
ontained within a ball in the solid torus). As su
h, one mayuse the \lightbulb tri
k" | if a lightbulb hangs from a knotted 
ord, the 
ord
an be isotoped to one without a knot while �xing the light bulb | to show thatN 
an be isotoped to the 
on�guration of Figure 3.3 (see [154, p. 257℄).

Figure 3.3: The interse
tion of N and T .Given N \T as in Figure 3.3(a), the orbit (ua)1 is isotopi
 within T (hen
e,within S3) to a 
urve within N . This isotopy involves pushing the orbit \out-wards" so that it 
ompletes a 
ir
uit in a neighborhood of a1, 
rosses to b1through I , 
ontinues around b1, then goes ba
k a
ross I .After the isotopy, it is 
lear that (ua)1 is the 
onne
ted sum of u1 and a1.Sin
e u1 is an unknot, (ua)1 has the knot type of a1. Sin
e u1 is unknottedand untwisted, (ua)1 is also separable with respe
t to u1 and the pro
ess maybe iterated, 
reating the sequen
e �uka�1, whi
h a

umulates on u1. 2A 
onverse to Proposition 3.1.19 holds for positive templates and provides a
lue to the distribution of knots on templates.Theorem 3.1.20 Let T be a positive embedded template. Suppose that a se-quen
e of distin
t periodi
 points a1n in �T all 
orrespond to the same knot
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umulation point of this sequen
e of the form u1 representsan untwisted unknotted periodi
 orbit.Proof: Arrange T as a positively braided template as per Theorem 3.1.2. Givenu1 an a

umulation point for the sequen
e a1n , reindex this latter sequen
e todenote the subsequen
e whi
h 
onverges to u1. For n suÆ
iently large, a1n mustbe of the form �ukbn�1 for k any �xed number: this is pi
tured in Figure 3.4.If u1 is nontrivially knotted, then by Equation (1.3), 
u > Nu, where 
u isthe self-
rossing number and Nu is the number of strands in the braid represen-tation of u1. From the form of a1n = �ukbn�1, it follows that the genus ofa1n is greater than or equal to k times the [nonzero℄ genus of u1. As k 
an be
hosen arbitrarily large, the sequen
e fa1n gn will not have bounded genus.
u1 a1

Figure 3.4: A portion of the orbit a1n for n large.If u1 is an unknot of twist �u > 0, then there are at least 12�uk(k� 1) 
ross-ings of a1n = �ukb�1 with u1 (
f. Figure 3.2). Sin
e, for n large, k is large,Equation (3.8) implies that the genus of the sequen
e fa1n g is unbounded. We
on
lude that u1 is an untwisted unknot. 2Theorem 3.1.20 implies that, on a positive template T , the 
olle
tion of knottypes supported on T \a

umulates" at untwisted unknots and nowhere else.Remark 3.1.21 Let f
ig11 be a sequen
e of distin
t 
losed orbits in a 
ow. Wesay that 
i a

umulates on a 
losed orbit 
 if there exists a sequen
e of pointsfxi 2 
ig11 whi
h have x 2 
 as an a

umulation point for some x 2 
. Ifwe 
onsider the 
lass of 
ows that have one-dimensional basi
 sets (e.g., Smale
ows) with \positive" twisting, we 
an lift Theorem 3.1.20 to the original 
ow
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e of distin
t periodi
 orbits of bounded genusmust a

umulate on untwisted unknots.Remark 3.1.22 Theorem 3.1.20 fails spe
ta
ularly for non-positive templates.Using results from the remainder of this 
hapter, it has re
ently been shown thatin su
h 
ases, pra
ti
ally anything 
an o

ur: see Remark 3.3.12.3.2 Universal templatesWe have in Theorem 3.1.13 one extreme: every embedded template must 
ontaina nontrivial knot, and in fa
t, by Corollary 3.1.14, in�nitely many distin
t knots.The other extreme, however, is un
lear, as to whether an embedded template 
an
ontain all knots. Certainly, the �gure-eight knot 
annot live on the embeddedLorenz template L(0; 0), as this template is positive and the �gure-eight knot
annot be represented by a positive braid (re
all Exer
ise 1.1.21). Hen
e, thereexist 
lasses of templates whi
h do not 
ontain all knots.Question 2 Does there exist an embedded template T � S3 
ontaining all knotsas periodi
 orbits? All links?The answer to Question 2 was 
onje
tured to be no [24℄: we will prove other-wise, outlining the arguments of [69℄, while providing a more general perspe
tive.Question 2 is to some degree not the most general approa
h to understanding\what lives" in a given template. Fo
using instead on the 
lass of embeddedtemplates leads to the following question:Question 3 Given an embedded template T � S3, what are all the subtemplatesof T ?In this se
tion, we ta
kle Question 2 by using methods suited for answeringQuestion 3.3.2.1 Examples of subtemplate stru
turesLorenz-like templatesAs a basi
 example of a subtemplate question, re
all Problem 2.3.6 
on
erningthe relationships between the Lorenz-like templates of x2.3.1. We derive a partialanswer in this subse
tion, following [168℄, but using the symboli
 methods of thismonograph.In Figure 2.20 of x2.4.2, we proved that L(0; 2) � L(0; 0) via an isotopi
in
ation. In the following, we use the symboli
 des
riptions of x2.4 to list aslightly more 
omplete 
olle
tion of isotopi
 in
ations relating these templates.



3.2. universal templates 79Proposition 3.2.1 The following template in
ations a
t isotopi
ally:L(0; n+ 2) ,! L(0; n) � x1 7! x1x2 7! x1x2 (3.15)L(0;�2) ,! L(0;�1) � x1 7! x1x2 7! x22 : (3.16)Proof: For the �rst in
ation, a simple generalization of Figure 2.20 is left to thereader. Figure 3.5 illustrates the isotopy for the se
ond in
ation. In both 
ases,one needs to use the belt tri
k when \pulling out" the subtemplate. 2
Figure 3.5: The template L(0;�2) is a subtemplate of L(0;�1).The 
hain of in
lusions among Lorenz-like templates implied by Proposition3.2.1 is� � � � L(0; 4) � L(0; 2) � L(0; 0) � L(0;�2) � L(0;�4) � � � �\� � � � L(0; 5) � L(0; 3) � L(0; 1) � L(0;�1) � L(0;�3) � � � � :(3.17)The templates U and VAs a more intri
ate example of subtemplate stru
tures, we turn to two de
ep-tively simple templates �rst studied in [169℄ and later in [69℄.Let V denote the embedded template of Figure 3.6(a), also introdu
ed inExample 2.4.10. Let U denote the embedded template of Figure 3.6(b). Ea
htemplate has two bran
h lines, `1 and `2, and four strips, labeled x1; : : : ; x4.These templates are related in a fas
inating way:Proposition 3.2.2 The following are isotopi
 template in
ations:F : U ,! V 8>><>>: x1 7! x1x2 7! x1x2x3x3 7! x4x2x4 7! x4 ; (3.18)
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x1 x2
x3 x4

x1 x2
x3x4(a) (b)Figure 3.6: (a) The template V ; (b) the template U .G : V ,! U 8>><>>: x1 7! x1x2 7! x1x3 7! x2x4x4 7! x2x3x4 : (3.19)Proof: See the isotopies in Figures 3.7 and 3.8. 2

Figure 3.7: The template in
ation F a
ts isotopi
ally.Proposition 3.2.2 presents a puzzling situation: U � V and V � U , and thein
lusions o

ur in many di�erent ways. By in
orporating the symboli
 approa
hto subtemplates of x2.4, we 
an tra
k these various in
lusions. For example, Uand V display a symmetry whi
h may be exploited to generalize the templatein
ations F and G:
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Figure 3.8: The template in
ation G a
ts isotopi
ally.Lemma 3.2.3 The template in
ation� : U ! UV ! V 8>><>>: x1 7! x3x2 7! x4x3 7! x1x4 7! x2 (3.20)takes ea
h orbit to its mirror image.Proof: The a
tion of � is to ex
hange the bran
h lines. As the only 
rossingsin the templates of Figure 3.6 are at the bran
h lines, and these are of oppositesign, the in
ation � reverses the 
rossings of ea
h template. 2Lemma 3.2.4 Given any isotopi
 template in
ation R having either U or V asdomain and either U or V as range, the 
onjugate in
ation, R� = �R�, is alsoisotopi
.Proof: While the symboli
 a
tions of � and R do not 
ommute, the topologi
ala
tions do. To see this, note that taking the mirror image 
ommutes with theReidemeister moves of Figure 1.3. Hen
e, topologi
ally, R� a
ts as �2R. But,by Lemma 3.2.3, �2 is the identity, and R� a
ts as R: isotopi
ally. 2Example 3.2.5 Conjugate in
ations allow us to in
rease our \vo
abulary" ofin
ations on the templates U and V ; e.g.,F� : U ,! V 8>><>>: x1 7! x2x4x2 7! x2x3 7! x3x4 7! x3x4x1 : (3.21)
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ations F and G with their 
onjugates yields a va-riety of interesting subtemplate stru
tures: e.g.,Proposition 3.2.6 Let R : S ,! T be an isotopi
 in
ation of some templateS into some template T . If R fa
tors as R2GR1 for some isotopi
 in
ationsR1 : S ,! V and R2 : U ,! T , then the image of the isotopi
 in
ation R1G�R2is disjoint and separable from that of R.Proof: First, we isolate the a
tion of the in
ation G : V ,! U . Consider thesubtemplates given by the images of G and G�. The bran
h sets of these sub-templates are, due to Corollary 2.4.15,�(G(V)) = [x11 ; x1 (x1x2x3x4)1℄ [x1 (x2x4)1 ; (x1x2x3x4)1℄[(x2x4)1 ; x2x4 (x2x3x4x1)1℄ [x2x3x4x11 ; (x2x3x4x1)1℄�(G�(V)) = [(x4x2)1 ; x4x2 (x4x1x2x3)1℄ [x4x1x2x13 ; (x4x1x2x3)1℄[x13 ; x3 (x3x4x1x2)1℄ [x3 (x4x2)1 ; (x3x4x1x2)1℄ :We 
laim that the images of these two in
ations are disjoint subtemplates ofU , ex
ept for their 
ommon boundary orbit (x1x2x3x4)1. This may be shownby 
he
king that 
ertain shifts of �(G) (
onsidered as \intervals" under �) donot interse
t shifts of �(G�) ex
ept at their 
ommon boundary and at bran
hlines. Though this is perhaps 
omputationally tedious, it is a �nite pro
ess whi
hworks when pi
tures fail.However, the simplest proof is to 
arefully 
he
k that Figure 3.9(a) a

uratelyrepresents the subtemplates in question, and that these are disjoint. In Figure3.9(b), we 
rush out the transverse dire
tion of the semi
ow in ea
h subtemplate,yielding a link of two graphs. From this, it is 
lear that these graphs, and hen
ethe subtemplates, are separable.It follows, then, that the images of R1GR2 and R1G�R2 must also be dis-joint and separable 
opies of S in T . 2Corollary 3.2.7 Ea
h template U and V 
ontains a 
ountable in�nity of sub-templates isotopi
 to U and V whi
h are 
ompletely disjoint and separable.Proof: De�ne the in
ation An to be (FG) (FG�)n, for n = 0; 1; : : :. The imageof ea
h An is a subtemplate of V isotopi
 to V thanks to Proposition 3.2.2. We
laim that the image of An is disjoint and separable from the image of ea
h An+kfor k > 0. To prove this, note that An+k fa
tors asAn+k = nFG (FG�)k�1o (FG�)n+1 ; (3.22)so that the image of An+k is 
ontained in the image of (FG�)n+1. By Proposi-tion 3.2.6, the images of An and (FG�)n+1 are disjoint and separable, sin
e theydi�er by 
hanging one G to G�. Therefore ea
h template, V and U , 
ontainsin�nitely many separable 
opies of itself (and of the other template). 2
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Figure 3.9: The subtemplates G(V) and G�(V) (left) are disjoint and separable,as seen by redu
ing the subtemplates to embedded graphs (right).3.2.2 A template 
ontaining all linksThe embedded templates U and V of Corollary 3.2.7 entwine within one otherin surprisingly 
ompli
ated ways. We will exploit these subtemplate webs toanswer basi
 questions about subtemplate stru
tures. We begin with a solutionto the existen
e problem for templates whi
h are \universal" in the 
lass of links.Theorem 3.2.8 (Ghrist [69℄) The embedded template V 
ontains representa-tives of every �nite link as periodi
 orbits.The proof of Theorem 3.2.8 is the fo
al point of this 
hapter, and will beperformed in steps.We begin by examining a new family of templates, fWq ; q 2 Z+g, illustratedin Figure 3.10. Ea
h Wq is an embedded q-fold 
over of V ; that is, there are 2q\ears", or 
opies of the x1 and x3 strips. It is important to note that these earsalternate in 
rossing type | we denote them positive- and negative-type earsa

ordingly.It is 
lear that there is a natural sequen
e of subtemplate in
lusions V =W1 � W2 � W3 � : : : This in
reasing sequen
e is \large enough" to eventually
ontain any given link:Proposition 3.2.9 Given L an arbitrary link in S3, an isotopi
 
opy of L ap-pears as a set of periodi
 orbits on the template Wq for q suÆ
iently large.Proof: Re
all the braid group on N strands, BN , from x1.1, generated by theelements �i, i = 1:::N�1. We 
onstru
t \lo
al" representatives of ea
h generator
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2qFigure 3.10: The template Wq has 2q \ears."(plus inverses) whi
h live on Wq on a �nite sequen
e of alternating ears. Thearrangement of ears on Wq mimi
s the 
on
atenation operation for the braidgroup.In Figure 3.11, we show how to pla
e the braid word �1�2 : : : �k for any kon an ear with a positive 
rossing: the leftmost strand travels around the earand is reinserted at an appropriate point. Similarly, we may pla
e the word��11 ��12 : : : ��1k on an ear with a negative 
rossing. Assuming that some �nitesequen
e of ears 
on
atenated together yields the generators �j and ��1j for allj < k, form the generator �k via 
on
atenation:�k = (��1k�1) : : : (��12 )(��11 )(�1�2 : : : �k�1�k): (3.23)Hen
e, by indu
tion, every �k and ��1k �t on a �nite sequen
e of alternatingears.For b 2 BN a braid on N strands, we may pla
e the 
losed braid b onWq forsome (perhaps very large) q by pie
ing together the N -strand generators aboveon a �nite sequen
e of alternating ears, then \
onne
ting" the top and bottom.More spe
i�
ally, sin
e ea
h 
omponent of the link 
an be given a sequen
e insome Markov stru
ture for Wq (though this would be messy to do in pra
ti
e),that orbit must exist on the template. We must be 
areful, however, that no two
omponents of the 
losed braid have the same symbol sequen
e; else, they willnot be distin
t orbits onWq . To avoid this, note that sin
e only one strand of thebraid goes around an ear in the generators we use, it is suÆ
ient to ensure thatevery strand of b goes around at least one ear. This may be done by appendingthe word �N�1��1N�1 to b: this does not 
hange the braid element and hen
e theisotopy 
lass of the resulting N -braid on Wq. 2Sin
e Wq � Wq+1 � : : : eventually 
ontains any given link, our strategy isto show that reverse subtemplate in
lusions also hold: Wq � Wq�1 � : : : � V .
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�1�2 : : : �k
��11 ��12 : : : ��1k

Figure 3.11: The braid words �1�2 : : : �k and ��11 ��12 : : : ��1k �t on the ears ofWq .To �nd a 
opy of Wq within V , we develop a type of surgery for subtemplates ofV . We denote the following pro
edure appending an ear.Lemma 3.2.10 Let S � V be a subtemplate of V and let I = [�`(I); �r(I)℄ bethe 
omponent of S \ `1(V) whi
h is minimal among all su
h interse
tions withrespe
t to the � ordering on the upper bran
h line. If �`(I) 6= x11 , then S is
ontained in a subtemplate S+ � V and this template S+ is isotopi
 to S ex
eptfor the addition of an unknotted ear along I. Moreover, the subtemplate S+
ontains the orbit �4̀(V).Proof: The subtemplate S is 
ompletely determined by its bran
h set �(S), seeDe�nition 2.4.2. That is, given �(S), the subtemplate S is uniquely de�ned by
owing ea
h bran
h segment forwards until it 
ompletely 
overs a 
olle
tion oftwo or more bran
h segments. We spe
ify the new subtemplate S+ by modifying�(S).Constru
t �(S+) as follows: begin with �(S) [ [x11 ; x1�r(I)℄ [ I . This hasthe e�e
t of adding a new strip whi
h goes on
e around the x1 strip and atta
hesat the new bran
h line [x11 ; �r(I)℄. Then, to form a well-de�ned subtemplate,whenever an endpoint of some interval of �(S+) ends in �`(I), repla
e this stringwith the string x11 . This has the e�e
t of \thi
kening" the portion of S+ whi
h
omes in along the x4 strip of V : see Figure 3.12.
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SI �4̀(V)

S+Figure 3.12: Appending an ear to S � V yields S+.To prove that �(S+) as de�ned yields a subtemplate, we note that the theaddition of the bran
h segment [x11 ; x1�r(I)℄ 
ows forward to the new bran
hline [x11 ; �r(I)℄ without interfering with other strips, sin
e I was minimal. Whatwas the in
oming strip of S at I has been thi
kened to 
over x11 at the leftendpoint; hen
e, there is a lo
al bran
h line 
hart for S+ along [x11 ; �r(I)℄.Finally, we note that the appended ear is unknotted and \separable" fromthe rest of the subtemplate sin
e the 
ore orbit x11 is a separable unknot. Also,in thi
kening up the in
oming strip along x4, we in
lude the orbit �4̀(V) in S+(this fa
t will be used later in Theorem 3.2.14). 2The appended ear along I is a positive ear, sin
e the 
rossing of the ear overthe rest of the subtemplate is in the positive sense; similarly, negative ears maybe added at the lower bran
h line:Lemma 3.2.11 Let S � V be a subtemplate of V and let I = [�`(I); �r(I)℄ bethe 
omponent of S \ `2(V) whi
h is minimal among all su
h interse
tions withrespe
t to the � ordering. If �`(I) 6= x11 , then S is 
ontained in a subtemplateS� � V and this template S� is isotopi
 to S ex
ept for the addition of anunknotted ear along I. Moreover, the subtemplate S� 
ontains the orbit �2̀(V).Proof: Apply the symmetry map � to V , taking the subtemplate S to its mir-ror image S� as per Lemma 3.2.3. The segment �(I) � `1 then satis�es thehypotheses of Lemma 3.2.10, and one may append an ear to �(S) to obtain asubtemplate (S�)+ having an appended positive ear. Again applying � to Vtakes this subtemplate to its mirror image: a subtemplate isotopi
 to S with anegative (the mirror image of a positive) ear appended along �2(I) = I � `2.This template 
ontains the orbit �2̀(V) = � ��4̀(V)� as an orbit. 2To build 
opies of Wq as subtemplates of V , we must �nd a way to map Vinside of itself isotopi
ally so as to avoid the x11 and x13 boundaries (e.g., theisotopi
 renormalizationD of Example 2.4.16 will not do). Then, we may append
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h a way that the resulting template is, say, iso-topi
 toW2, and an iterative pro
edure may be used to build su

essively largersubtemplates isotopi
 toWq. We begin with the appropriate renormalization onV whi
h keeps tra
k of 
ertain orbits for the iterative pro
edure later:Proposition 3.2.12 The in
ation H � F�GFG� takes V ,! V isotopi
ally.Among all points of H(V)\ `1(V), the �-minimal point is 
ontained in the orbitH(�2̀(V)).Proof: The symboli
 a
tion of H isH � F�GFG� : V ,! V 8>><>>: x1 7! x2x23x4x1(x2x4)2x2x3x4x1x2 7! x2x23x4x1(x2x4)3x2x3x4x1x3 7! x2x23x4x1x2x4x4 7! x2x23x4x1x2x4 : (3.24)That this in
ation is isotopi
 follows from Proposition 3.2.2. To show whi
hpoint in the image of V is �-minimal in the upper bran
h line `1, it is suÆ
ientto 
he
k the image of the boundary of V . This boundary, �(V), is given impli
itlyin Equation (2.23) | we �rst re
all this information:
�(V) = 8>>>>>>>>>><>>>>>>>>>>:

�1̀(V) = x11�r1(V) = x1 (x2x4)1�2̀(V) = x2x13�r2(V) = (x2x4)1�3̀(V) = x13�r4(V) = x3 (x4x2)1�5̀(V) = x4x11�r5(V) = (x4x2)1 : (3.25)
Next, 
ompute the image of the endpoints �`=ri (V) under the in
ation H:H : V ,! V (3.26)�1̀(V) 7! �x2x23x4x1(x2x4)2x2x3x4x1�1�r1(V) 7! x2x23x4x1(x2x4)2x2x3x4x1 �x2x23x4x1(x2x4)3x2x3x4x1x2x23x4x1x2x4�1�2̀(V) 7! x2x23x4x1(x2x4)3x2x3x4x1 �x2x23x4x1x2x4�1�r2(V) 7! �x2x23x4x1(x2x4)3x2x3x4x1x2x23x4x1x2x4�1�3̀(V) 7! �x2x23x4x1x2x4�1�r3(V) 7! x2x23x4x1x2x4 �x2x23x4x1x2x4x2x23x4x1(x2x4)3x2x3x4x1�1�4̀(V) 7! x2x23x4x1x2x4 �x2x23x4x1(x2x4)2x2x3x4x1�1�r4(V) 7! �x2x23x4x1x2x4x2x23x4x1(x2x4)3x2x3x4x1�1 :From (3.24), the image of the �rst x2 in �2̀(V) 
ontains two x1 symbols. We
laim that a shift of the image of �2̀(V) to one of these two x1 symbols is �-minimal in `1(V) among all shifts of the image of every other endpoint of �(V)
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h begin with x1. That this is so is a simple matter of 
hoosing the shift ofthe image of �2̀(V) whi
h is �-minimal in �1(V) and then 
omparing this to allsu
h shifts of the other endpoints H(�`=ri (V)). Using the �-ordering, this 
an bedone by hand or (more 
onveniently) by 
omputer. In this manner, we 
al
ulatethat �14H(�2̀(V)) = x1 �x2x23x4x1x2x4�1 (3.27)is �-minimal among all other orbits in the image of H in `1(V), where � denotesthe shift operator. 2Note that the �-minimal point in H(V) on `1 is not x11 | thus, we mayuse this renormalization to append positive ears. The 
onjugate in
ation will beused to append negative ears:Proposition 3.2.13 The in
ation H� � FG�F�G takes V ,! V isotopi
ally.Among all points of H�(V)\`2(V), the �-minimal point is 
ontained in the orbitH�(�4̀(V)).Proof: Sin
e H is isotopi
, so is the 
onjugate H� via Lemma 3.2.4. Apply � toEquation (3.27) to show that��14H(�2̀(V)) = �nx1 �x2x23x4x1x2x4�1o (3.28)is �(�)-minimal in �(`1(V)); after an appli
ation of Lemma 3.2.3 and the fa
tthat � 
ommutes with the shift operator �,�14�H(�2̀(V)) = x3 �x4x21x2x3x4x2�1 (3.29)is �-minimal in `2(V). Now insert �2 in the domain. Sin
e � is involutive, wehave shown that�14�H�(��2̀(V)) = �14H�(�4̀(V)) = x3 �x4x21x2x3x4x2�1 ; (3.30)is �-minimal in `2(V). 2We may now 
omplete the major step in the proof of Theorem 3.2.8.Theorem 3.2.14 The template Wq appears as a subtemplate of V for all q > 0.Proof: As we will be working with a series of distin
t 
opies of the template V ,we introdu
e some notation. Let fV ig denote a sequen
e of distin
t 
opies of theembedded template V | ea
h is embedded in a di�erent 
opy of S3. Constru
tan alternating sequen
e of templates and isotopi
 in
ations:V1 H�! V2 H��! V3 H�! V4 H��! V5 H�! V6 H��! � � � (3.31)By Proposition 3.2.12, we may append a positive ear to H(V1) in V2 along theimage of �2̀(V1), 
reating the template denoted W+1 � V2. This subtemplate
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ontains the orbit �4̀(V2). By mapping V2 into V3 via H�, we push W+1 toa deeper isotopi
 
opy within V3. A negative ear may then be appended toH�(W+1 ) � V3 along H�(�4̀(V2)) a

ording to Proposition 3.2.13. Sin
e thenegative ear is appended along an interval having endpoint on H�(�4̀(V2)), theappended negative ear \pre
edes" the formerly appended positive ear (in thesense of the 
ow-dire
tion), yielding a subtemplate of V3 isotopi
 to W2: seeFigure 3.13. H H�
(+) ear (�) ear�2̀(V1) �4̀(V2)H ��2̀(V1)� �2̀(V3)H ��4̀(V2)�H�H ��2̀(V1)�(a) W1 (b) W+1 (
) W2Figure 3.13: The steps in building Wq.We now have the template V3 
ontaining a subtemplate isotopi
 toW2 whi
h
ontains the orbit �2̀(V3). Sin
e V3 is again an isotopi
 
opy of V1 with �2̀(V3)
orresponding to �2̀(V1), we may now iterate the pro
edure. Map V3 into V4via H, append a positive ear to the image of W2 to obtain W+2 , then apply H�and append a negative ear to the image of W+2 to produ
e W3. Sin
e all thein
ations involved are isotopi
, we 
ontinue to 
arry the 
ompleted Wi alongisotopi
ally as we append additional ears. Thus, we 
an embed Wq in V forarbitrary q. 2Proof of Theorem 3.2.8: A

ording to Theorem 1.1.13, any link may be repre-sented as some 
losed braid. By Proposition 3.2.9, this 
losed braid must appearon Wq for q suÆ
iently large; hen
e, by Theorem 3.2.14, this link lives on V . 23.2.3 Universal templatesDe�nition 3.2.15 A universal template is a template T � S3 among whoseperiodi
 orbits are representatives of every link type.
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e of universal templates.Proposition 3.2.16 The Lorenz-like templates L(0; n) are universal for n < 0Proof: In Figure 3.14, we show the image of the in
ationL : U ,! L(0;�2) 8>><>>: x1 7! x1x2 7! x31x2x3 7! x2x1x4 7! x2x1x2 : (3.32)It is a (
hallenging!) exer
ise for the reader to show that this image is isotopi
to U . By Propositions 3.2.2 and 3.2.1, there is a subtemplate 
hainV � U � L(0;�2) � L(0;�4) � L(0;�6) � � � �� L(0;�1) � L(0;�3) � � � � : (3.33)The result now follows from Theorem 3.2.8. 2

Figure 3.14: The template U is a subtemplate of L(0;�2).Given some embedded template, it is often relatively easy to re
ognize aLorenz-like subtemplate; hen
e, we have a useful test for identifying universaltemplates.Corollary 3.2.17 SuÆ
ient 
onditions for a template T � S3 to be universalare



3.2. universal templates 911. There is a two-
omponent unlink on T ; that is, there exist two separableunknots.2. One 
omponent of the unlink is untwisted; the other is twisted with � 6= 0twists.3. The two unknots interse
t some bran
h line of T in two adja
ent points(re
all De�nition 3.1.5) The sign of the bran
h line 
rossing between thesetwo points must be opposite that of the twist � .Proof: Let a1 and b1 denote the adja
ent points in �`j , with b1 denoting theorbit with twist � . For � < 0, the template in
ationL(0; �) ,! T � x1 7! ax2 7! b (3.34)is isotopi
, sin
e a1 and b1 are an unlink and there is agreement betweentwisting and bran
h line orientation. For � > 0, the same symboli
 map sendsthe mirror image of L(0;��) into T isotopi
ally. However, the mirror image ofa universal template is also universal. 2We may use Corollary 3.2.17 to show that 
ertain hyperboli
 
ows on S3
ontain all links as periodi
 orbits: e.g.,Proposition 3.2.18 The suspension of the Plykin map, given in Example 2.1.6,when embedded in S3 in the \standard" way, yields a 
ow having all link-typesas periodi
 orbits.Proof: Re
all the Plykin attra
tor �P des
ribed in Example 2.1.6. The inverselimit 
onstru
tion of Williams implies that we 
an 
ollapse the attra
tor for themap to a bran
hed one-manifold whi
h suspends to a semi
ow on a bran
hedtwo-manifold3. In Figure 3.15, we show two periodi
 orbits in the suspension ofthe Plykin graph. The �rst orbit, 
a, has period one, is untwisted, and is 
learlyseparable from all other orbits. The se
ond orbit, 
b, is an unknot.It is not hard to see that 
b must be a twisted orbit; however, even if it werenot, we 
ould use Proposition 3.1.19 and Corollary 3.1.10 to show the existen
eof another orbit whi
h is a twisted unknot separable from 
a. Finally, we donot need to know the sign of the twist, sin
e on the \bran
h line" (the graph�P ), the orbit 
a is adja
ent to a point of 
b on either side, so it has bran
h line
rossings of both types; hen
e, by Corollary 3.2.17, the periodi
 orbits of this
ow 
ontain all link types. 2Corollary 3.2.17 is genuinely useful in this instan
e, sin
e it is very diÆ
ultto draw an a

urate pi
ture of the entire template for the suspended Plykinattra
tor. The Plykin attra
tor is the simplest hyperboli
 planar attra
tor. Wehave examined a few other examples and have managed to show that these alsogive rise to universal templates: we do not know of an example whi
h does not.3Though the suspension of the Plykin graph does not satisfy the de�nition of a template,it may be thought of as a template with the boundaries sewn together.
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a 
b

�P

Figure 3.15: The suspension of the Plykin attra
tor | top are bottom areidenti�ed. Two orbits, 
a and 
b, form a \spine" for a universal subtemplate.Corollary 3.2.19 There exists a stru
turally stable ve
tor �eld on S3 su
h thatthe indu
ed 
ow on S3 
ontains 
losed orbit representatives of all knot and linktypes.Proof: The Plykin map suspends to a 
ow on D2 � S1 whi
h is inwardly trans-verse on the boundary and has 
hain re
urrent set 
onsisting of three attra
tingperiodi
 orbits and the suspended Plykin attra
tor. Complete the 
ow on S3 bytaking another D2 �S1 having a single repelling periodi
 orbit as f0g� S1 andoutwardly transverse at the boundary and gluing these two solid tori togetherto get S3 (a more detailed treatment of this 
onstru
tion appears in xA.1). Theresulting 
ow has a hyperboli
 
hain re
urrent set and hen
e, by Theorem 1.2.14,is stru
turally stable to C1 perturbations. 2Remark 3.2.20 There are numerous examples of 
ows on S3 having all linktypes as periodi
 orbits. In x4.4, we will show that 
ows arising from 
ertain\simple" ordinary di�erential equations 
an be modeled with a universal tem-plate. In [69℄, it was shown that 
ertain �bred knots, namely the �gure-eightknot and the Borromean rings, have 
omplement �bred by a �bration whose in-du
ed 
ow 
ontains all links as orbits (re
all x2.3.4). As an exer
ise, the readermay wish to �nd two orbits on the template for the Whitehead link 
omplement,Figure 2.17, whi
h satisfy the 
onditions of Corollary 3.2.17, showing that thisalso is a universal template.The Lorenz-like templates are the simplest 
lass of templates: they have twounknotted unlinked strips with one bran
h line. A 
omplete 
lassi�
ation of



3.2. universal templates 93these templates into universal and non-universal would be useful, 
f. Corollary3.2.17. At this time, we 
an o�er only the following:Proposition 3.2.21 For mn � 0, the Lorenz-like template L(m;n) is universalif and only if m or n is 0 and the other index is negative.Proof: Proposition 3.2.16 
overs the 
ase where one number is zero and the otheris negative: we will show that all other 
ases with mn � 0 are not universal. Inthe 
ase where m and n are both nonnegative, the template L(m;n) 
ontainsonly positive 
rossings and therefore 
arries no knots with mixed 
rossings (su
has the �gure-eight knot). Next, 
onsider the 
ase where m and n are bothnegative. Let Ka and Kb be two distin
t knots on L(m;n) whi
h form a link.If L(m;n) were universal, there would be an in�nite number of distin
t 
hoi
esfor Ka and Kb whi
h would span all possible linking numbers. We 
ompute thelinking number as one half the algebrai
 sum of the total number of 
rossings,C, as per Equation (1.2). The 
rossing number, C, 
an be de
omposed into thesum C = Cm + Cn + Co; (3.35)where Cm equals the 
ontribution due to the m half-twists along the x1 strip,Cn equals the 
ontribution due to the n half-twists along the x2 strip, and Coequals the number of 
rossings due to the overlap of the x1 strip over the x2strip at the bran
h line. Denote by aij (resp. bij) the number of xixj blo
ks inthe periodi
 itinerary of Ka (resp. Kb). Example: if Ka = �x1x22x1x2�1, thena11 = 0; a12 = a21 = 2, and a22 = 1. We note that in all 
ases,a12 = a21; b12 = b21: (3.36)We 
an 
al
ulate the 
rossing numbers Cm and Cn:Cm = m(a11+a12)(b11+ b12) � 0; Cn = n(a21+a22)(b21+ b22) � 0: (3.37)We will maximize the 
rossing numbers in order to obtain upper bounds;hen
e, we assume that there is a minimal amount of negative twisting in thestrips, thereby setting m = n = �1 in Equation (3.37). To maximize theover
rossing number Co, we again assume that all potential 
rossings 
an infa
t o

ur. This situation is displayed s
hemati
ally in Figure 3.16, where thedi�erent strands do not represent the knots themselves, rather those portionsof the knots whi
h 
orrespond to the numbers a11, et
. From Figure 3.16, the
rossing number is bounded above byCo � a12b21 + a21b12 + a11b21 + a21b11 + a22b12 + a12b22: (3.38)Combining this with Equations (3.35) and (3.36) yieldsC � 2a12b12 + a11b12 + a12b11 + a22b12 + a12b22 � a11b11 � a11b12�a12b11 � a12b12 � a12b12 � a12b22 � a22b12 � a22b22� �(a11b11 + a22b22)� 0 :(3.39)
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Figure 3.16: A s
hemati
 diagram of 
rossings on the template L(�1;�1): ea
hstrand labeled aij (resp. bij) represents a 
olle
tion of aij (resp. bij) strands ofthe knot Ka (Kb) whi
h begin on the strip xi and end on the strip xj .Hen
e, the linking number `k(Ka;Kb) is at most zero and L(m;n) 
annot sup-port all links. 2We have 
lassi�ed the universal Lorenz-like templates in every 
ase ex
eptm < 0; n > 0 (and vi
e versa). The linking number estimates in the proof donot yield the ne
essary results in the 
ase when m and n are of mixed sign. Wesettle for the following:Conje
ture 3.2.22 A Lorenz-like template L(m;n) supports all links if andonly if either m or n is zero and the other index is negative.The most pressing problem 
on
erning universal templates is to determine asimple set of ne
essary and suÆ
ient 
onditions for universality. We 
on
ludewith two related 
onje
tures.Conje
ture 3.2.23 An embedded template T � S3 is universal if and only ifit 
ontains V as a subtemplate.
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ture 3.2.24 An embedded template T � S3 is universal if and only if it
ontains a 
ountable untwisted unlink: ea
h 
omponent of whi
h is an untwistedunknot, separable from all other 
omponents.Conje
ture 3.2.24 would give an obstru
tion to hyperboli
 dynami
s in 
ows. Forexample, the suspension of the identity map on D2 has a 
ountable untwistedunlink, yet, it does not support 
losed orbits of all knot types; hen
e it is not ahyperboli
 system.3.2.4 Where do all the knots live?The topologi
al ri
hness of 
losed orbits on templates that we have examined inthis se
tion is at �rst mysterious. Given an inno
uous looking template su
h asV , it is hard to imagine what a very 
ompli
ated knot (e.g., the 
onne
ted sumof a thousand trefoils) must look like on this template. As an addendum to thisse
tion, we give a qui
k 
omputation illustrating how even a \simple" knot mayrequire a rather 
omplex presentation on a universal template.The proof of Theorem 3.2.8 is 
onstru
tive. So, in theory, we should be ableto 
ompute a representative of any given 
losed braid on V . Consider the �gure-eight knot, denoted K8. This link in 
losed braid form has a presentation (inthe standard generators) with three strands as (�2��11 )2. To pla
e this knot onWq for some q, we write the generators �i in the form of Proposition 3.2.9:(�2��11 )2 = ()(��11 )(�1�2)(��11 )()(��11 )(�1�2)(��11 ); (3.40)where the empty parentheses () denote positive ears that are not traversed inarranging K8 on W4. 
0

1 
2
3
4
2qFigure 3.17: The spine of Wq , with fundamental loops labeled.From the proof of Theorem 3.2.14, we know that W4, and hen
e K8, liveon V . Although the proof does not supply a pre
ise in
ation from Wq to V ,the symboli
 a
tion of the 
onstru
tion is tra
eable in part. In Figure 3.17, wepresent the spine of the template Wq, formed by 
rushing out the transverse
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tion to the semi
ow. The generators of the fundamental group of Wq arelabeled 
0; 
1; : : : ; 
2q in the order in whi
h they are 
onstru
ted within V . By
arefully following the proof of Theorem 3.2.14, one 
an tra
k the images of theseloops 
i in V for the \simplest" 
opy of Wq in V :i 
i 2 �1(Wq)0 (H�H)q�1(x2x4) = �FG�(F�G)2FG��q�1 (x2x4)1 (H�H)q�1(x1) = �FG�(F�G)2FG��q�1 (x1)i = 2k > 0 (H�H)q�k(x3) = �FG�(F�G)2FG��q�k (x3)i = 2k + 1 > 1 (H�H)q�k�1H�(x1) = �FG�(F�G)2FG��q�k�1 FG�F�G(x1)(3.41)From this table, we 
ould 
ompute the symbol sequen
e of this representativeof K8 in V ; however, printing it out might take more room than our publisherwishes to spare. We merely 
ompute the symboli
 period, i.e., the length of therepeating blo
k of the periodi
 word.The knot K8 on W4 determines a word in �1(W4) in the 
i generators | letni, i = 0 : : : 8 denote the number of 
i terms in this word. In other words, thelink K8 goes around the loop 
i exa
tly ni times. To 
ompute j
ij, the symboli
length of the image of the loop 
i in V , we de�ne a symboli
 growth matrix fora template renormalization.De�nition 3.2.25 Given a renormalization R : T ,! T , where T has Markovpartition fx1; x2; : : : ; xNg, de�ne the growth matrix of R, GR 2 MN(Z+), asfollows: GR(xi; xj) = f# of xi symbols in R(xj)gg (3.42)Lemma 3.2.26 For any R and ~R : T ! T ,GR ~R = GRG ~R: (3.43)Proof: This follows from De�nition 3.2.25 and the fa
t that the number of xisymbols in R ~R(xj) equalsGR ~R(xi; xj) =Xk GR(xi; xk)G ~R(xk ; xj) = hGRG ~Ri (xi; xj): (3.44)2We 
ompute the growth matri
es for the renormalizations H and H� fromEquations (3.24) and (3.20) to beGH = 2664 2 2 1 14 5 2 23 3 2 24 5 2 2 3775 GH� = 2664 2 2 3 32 2 4 51 1 2 22 2 4 5 3775 : (3.45)Hen
e, by using Lemma 3.2.26 and the information from (3.41), we 
an 
omputethe growth matrix for the renormalization whi
h takes ea
h 
i into V . Thisinformation yields the length of the orbit 
i in V :
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tures 97Example 3.2.27 To �nd j
0j for W4 � V , we look up 
0 from (3.41) and notethat it is the image of (x2x4)1 under (HH�)3. To 
ount j
0j, the length, set~v = [0; 1; 0; 1℄t and take the produ
t �GHGH��3 ~v. Then sum all the entries ofthis 
olumn matrix | from De�nition 3.2.25, this 
ounts the number of x2 andx4 elements, giving the length j
0j.i ni j
ij i ni j
ij0 3 3387648 5 0 8391 0 1990365 6 1 772 1 1086485 7 1 73 1 99679 8 1 14 1 9145 (3.46)Finally, to obtain the length of the representative of the �gure-eight knot K8in V , a simple 
omputation from (3.46) gives:jK8j = 8Xi=0 nij
ij = 11; 358; 338; (3.47)or, over eleven million. There are surely simpler representatives of K8 on V ;however, the simplest may still be outside of the range in whi
h one 
an drawit.4This example illustrates that methods used in the proof of Theorem 3.2.8extra
t relatively \deep" information from templates.Remark 3.2.28 To 
ompute upper bounds for the minimal length of a givenknot type represented on V , one need merely 
ompute the Perron-Frobenius(i.e., maximal) eigenvalue of the growth matrix GH | it is about 10.332. Then,given any knotK, write it in braid format whi
h is 
ompatible with the templateWq , as done in Equation (3.40). Note that the length jKj of the resulting braidword may be qui
kly estimated from any braid version of L via the pro
edure ofProposition 3.2.9. A (poor) lower bound for the length of an orbit representingK is then given by (10:332)jKj�1, sin
e then in
ation H (or H�) must be appliedjKj � 1 times to �t Wq with the braid form of K on it within V . Applied tothe �gure eight example with braid length 8 (from Equation (3.40)), one getsan upper bound for the minimal length as 12; 567; 447 | o� from our 
omputedexample by about ten per
ent.3.3 Subtemplate stru
turesAlthough the results of Theorem 3.2.8 are ex
iting, we have, to some degree,drawn our 
on
lusions too soon. The proof su

eeds be
ause it examines sub-template stru
tures, whi
h 
arry the desired links, rather than examining the4Two of us (MS, RG) tried very hard to �nd a 
opy of K8 on V or U before Theorem 3.2.8was dis
overed.
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ru
ial step lies in showing Wq � V . Webegin this se
tion by resuming our study of the subtemplates of V . The results ofthis line of inquiry will lead to generalizations of Theorem 3.2.8 and will suggestdire
tions for further investigation along the lines of subtemplate stru
tures. Wedo not present all the results in full detail: the interested reader should be ableto �ll in su
h as ne
essary.We must distinguish between orientable and nonorientable 
ases, sin
e anorientable template 
annot 
ontain any nonorientable subtemplates. In x3.3.1and x3.3.2, we prove the existen
e of templates whi
h are \universal" in the
lasses of orientable and nonorientable templates in that they 
ontain isotopi

opies of all [orientable℄ templates as subtemplates.3.3.1 Orientable subtemplatesWe begin with a generalization of the braid group stru
ture of De�nition 1.1.11to a semigroup stru
ture on braided templates. The generators of the semigroupare of three types:1. ��i , is a \
at ribbon" version of the generators for the braid group: theith strip 
rosses over the (i + 1)st in the positive sense. These elementsare invertible;2. ��i , is the trivial element (a 
olle
tion of straight 
at strips) with the ithstrip given a half twist, either in the positive (�i) or negative (��1i ) sense.These elements are invertible.3. ��i , is a bran
h line 
hart with the ith and (i + 1)st strips in
oming, koutgoing strips5, and either a positive (�i) or a negative (��1i ) 
rossing atthe bran
h line. These generators are not inverses, as bran
h lines 
annotbe 
an
elled under 
omposition.Figure 3.18 illustrates the generators.The following result is obvious, and impli
it in the proof of Theorem 3.1.2[58℄:Lemma 3.3.1 The set f��i ; ��i ; ��i g generates the 
lass of braided templates.With the braided template semigroup playing the role of BN in Theorem3.2.8, we may generalize this result to:Theorem 3.3.2 The template V 
ontains every embedded orientable templateS as a subtemplate. Furthermore, these may be 
hosen so as to be disjoint andseparable.Proof: Re
all Theorem 3.2.14 | V 
ontains Wq for all q. The strategy of theproof of Theorem 3.2.8 was to show that any given 
losed braid 
an be �tted5For simpli
ity, we suppress referen
e to the number of strips involved, whi
h varies through-out the braid presentation, in our notation.
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(a) (b) (
)Figure 3.18: The generators for the braided template semigroup: (a) �i; (b) �i;(
) �i.onto someWq. We use the semigroup for braided templates in analogous fashionto show that all orientable templates also live on Wq , and hen
e on V .Consider S a template in S3, presented as a 
at braided template as perTheorem 3.1.2. To show that su
h a given template lives as a subtemplate ofWq for some q, we will express ea
h generator as a subtemplate of a portion ofWq ; that is, on a �nite sequen
e of alternating ears.In Figure 3.19, we exhibit a portion of a subtemplate on a pair of positive andnegative ears whi
h 
orresponds to the generator �1�2 : : : �k for any desired k.Note that the belt tri
k is used in 
on
ert with two ears of opposite sign to 
an
elthe full twist indu
ed by going around an ear. One 
onstru
ts the generator��11 ��12 : : : ��1k in analogous fashion. To show that some �nite produ
t of theseyields �j and ��1j for any j, we follow the same argument as in Proposition 3.2.9.To show that �i and ��1i appear likewise, we turn to Figure 3.20, whi
h
ontains a lo
al pi
ture of the generator �i. The �rst i strips travel around anegative ear and then a positive ear (or vi
e versa for ��1i ) in order to 
an
elthe twisting and allow for a positive (negative resp.) 
rossing at the bran
h line.Sin
e an orientable braided template may always be made 
at, we do notneed to �t powers of �i on Wq; hen
e, the entire generating set for braidedorientable templates appears lo
ally on a �nite set of alternating positive andnegative ears. Pie
eing together lo
al submanifolds on Wq is always possible aslong as the number of strips mat
hes | after in
luding all the 
rossings, bran
hlines, et
., one simply 
onne
ts the top to the bottom strips in the standardway. Hen
e, given any template presented in these standard generators, onemay 
onstru
t for some q (perhaps very large) a subtemplate of Wq whi
h isisotopi
 to the intended template.The result then follows from Theorem 3.2.14. 2
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Figure 3.19: The braided-template word �1�2 : : : �k lives on a pair of alternatingears.Remark 3.3.3 Theorem 3.3.2 indi
ates that, among the 
lass of orientable tem-plates, V is not merely an example of an ex
eptional template: it (and all othersu
h templates) truly deserves the title of universal template, sin
e a template
ontains all orientable templates if and only if it 
ontains V .Corollary 3.3.4 The template V 
ontains all evenly twisted links: that is, it
ontains all links indexed by the (even) twist of the lo
al stable manifolds (seeDe�nition 3.1.9).Proof: Given an indexed link L, where the 
omponents of L are indexed by thetwist, build an orientable template TL whi
h 
ontains the link L as its \spine."More spe
i�
ally, form a 
onne
ted graph from L by (arbitrarily) identifyingpoints on 
omponents pairwise. Then, thi
ken the graph up to a template,adding bran
h lines at verti
es and twisted strips along the edges as appropri-ate: 
f. Figure 3.9(b). This template, whi
h 
ontains L as a set of periodi
orbits, lives on V by Theorem 3.3.2. 2Our next result shows that any orientable template may be embedded in S3as a universal template (and then some):Theorem 3.3.5 Any orientable template T may be embedded in S3 so as to
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Figure 3.20: The generator �i lives on a pair of alternating ears.
ontain an isotopi
 
opy of all orientable templates as disjoint separable subtem-plates.Proof: Assume for the moment that, for some bran
h line `j , there exist twoperiodi
 points of �`j , a1 and b1, su
h that ea
h symbol xi in the Markovpartition of T appears at most on
e in the word ab; thus, ea
h strip of T
ontains at most one strand of the link fa1;b1g.Re-embed T by 
hanging the over
rossings of strips in the given planar pre-sentation in the manner to be des
ribed: by the above 
ondition, whenever theknots 
orresponding to a1 and b1 
ross one another, they must do so on sep-arate strips. Re-embed T so as to for
e the strip 
ontaining the orbit a1 toalways be on top. In this embedding, then, the two knots are 
learly separable.Now restri
t attention to those instan
es where the knot 
orresponding toa1 
rosses itself: if a and b are 
hosen as above, this 
rossing must be due to astrip 
rossing over itself or another strip. Beginning at an arbitrary point on thisorbit, follow along the dire
tion of the 
ow | whenever there is a self-
rossing,re-embed the strips so that the desigated point is on top. When �nished, onehas a knot whi
h 
an be perturbed so as to have a unique lo
al maximum: anunknot. Repeat this pro
edure for the knot b1, noting that one is not tamperingwith any previously re-embedded strips.Finally, build a Lorenz-like subtemplate of T given by the image of the in
a-tion x1 7! a; x2 7! b, as in Equation (3.13) in Corollary 3.1.17. Sin
e the orbits
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orresponding to a1 and b1 are unknotted and separable, the subtemplate inthe parti
ular embedding of T we have 
hosen is isotopi
 (up to taking the mir-ror image) to the Lorenz-like template L(�a; �b) for some even numbers �a; �b,depending on twist. Change the embedding of T by adding full twists to sele
tedstrips so that the subtemplate is isotopi
 to L(0;�n) (or its mirror image), forpositive n, whi
h 
ontains all orientable templates as separable subtemplates.To 
on
lude, we must verify our assumption that a1 and b1 exist. First,we eliminate 
ertain troublesome strips. If a parti
ular bran
h line `j has onlyone outgoing strip, we may have to 
hoose a and b to both travel down thisstrip. To avoid any problems asso
iated with this, we perform an isotopy onT within a tubular neighborhood of T in S3. This isotopy has the e�e
t ofpushing the bran
h line `j forwards (in the sense of the semi
ow) along theone outgoing strip until it is almost identi�ed with the next bran
h line: seeFigure 3.21. Under su
h an isotopy, any 
rossings that this unique outgoingstrip was formerly involved with are now subsumed by 
rossing of other strips(in
luding twisting in the original strip). Thus, we 
an ignore orbits whi
h traveldown this strip in the above arguments, and, in identifying the shrunken stripto the next bran
h line, we assume that every bran
h line 
hart 
ontains at leasttwo outgoing strips.

Figure 3.21: One 
an \eliminate" a single-outgoing strip by propagating thebran
h line forwards.Next, 
hoose a �nite admissible orbit a1. We 
laim that a may be 
hosensu
h that the knot passes through ea
h bran
h line at most on
e. Assume thata = a1a2a3, where a2 and a3 are words whose orbits begin from the same bran
hline. Then, repla
e a with a1a3: this is an admissible word sin
e in
oming stripsstret
h over bran
h lines 
ompletely. Iterating this redu
tion on a word of �nitelength is a terminal pro
ess.Finally, we 
laim that b may be 
hosen similarly to have no symbols in 
om-mon with a. Re
all, we have modi�ed T to have [in e�e
t℄ at least two outgoing
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h line 
hart, and a interse
ts ea
h bran
h line at most on
e.Beginning at some bran
h line of T , 
hoose an outgoing strip whose symbol isnot part of a | this is always possible sin
e there are more than two outgoingstrips. This outgoing strip leads to another bran
h line. Repeat the pro
essof 
hoosing outgoing strips avoiding a until the bran
h line is repeated: thisde�nes a periodi
 orbit a0. If a0 and a have a bran
h line in 
ommon, this isthe desired b. If not, repeat the pro
ess of 
hoosing another periodi
 orbit a00| this algorithm may be repeated sin
e there are again at least one in
omingand outgoing strips per bran
h line on T minus the strips of a and a0. Sin
e theMarkov partition is �nite, this is a �nite pro
ess; hen
e, a and b may be 
hosenas above. 2Corollary 3.3.6 Any embedded orientable template T 
ontains a (nonisotopi-
ally) embedded 
opy of every orientable template.3.3.2 Nonorientable subtemplatesThe nonorientable 
ase is quite a bit more subtle, but is solved in similar fashion.We leave the [numerous℄ details of the following theorem to the reader.Theorem 3.3.7 There exists a template whi
h 
ontains every embedded tem-plate S as a subtemplate.Idea of Proof: We begin with the template L(0;�2), whi
h 
ontains V via thein
ation LG, where L : U ,! L(0;�2) is the in
ation of Equation (3.32). Then,we append an extra ear to this template whi
h is twisted and separable from theremainder of the template: see the template Y in Figure 3.22. Given any tem-plate, we then show that it may be obtained by �rst pla
ing a similar orientabletemplate on L(0;�2), then diverting some of the strips around the twisted ap-pended ear of Y to produ
e the requisite nonorientable subtemplate.Let S be an arbitrary embedded template in S3. We brie
y indi
ate how topla
e S in the appropriate form for being a subtemplate of Y .Step 1: Pla
e S in braided form as per Theorem 3.1.2, and represent thistemplate in the braid semigroup of Lemma 3.3.1.Step 2: Fa
tor this braid word so that there is a positive half-twist � onthe �rst k strips, where � is the word� = �1�2 � � � �k  k�1Yi=1 �1�2 � � ��i! ; (3.48)followed by a braid word having no ��i terms.Step 3: For S braided into the word above, let ~S denote the 
at orientabletemplate given by removing the initial word � from the braid word. Map ~Sinto L(0;�2) � Y isotopi
ally via the in
ation LGI, where I : ~S ,! V is thein
ation from the proof of Theorem 3.2.8 and L : U ,! L(0;�2) is the in
ationfrom Equation (3.34).
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x2 x3x4x1

Figure 3.22: The template Y 
ontains all templates as subtemplates.Step 4: Now, by 
arefully tra
king the pla
ement of the �rst k strips inS � Y , modify the in
ation in the appropriate manner to \divert" the leftmostk strips of S on Y to instead make a loop around the appended twisted x1-ear.This has the e�e
t of inserting � into the braid word for ~S at the beginning.This new template is the original S by Step 3. 2Corollary 3.3.8 The template Y 
ontains isotopi
 
opies of links with arbitrarytwist type.Proof: See the proof of Corollary 3.3.4. 2Remark 3.3.9 Note that although Y 
ontains all embedded templates as dis-joint subtemplates, these may not be 
hosen so as to be mutually unlinked inthe present 
onstru
tion, sin
e there is a linking indu
ed by the trip about thetwisted ear. We believe that this is unavoidable: i.e., no embedded template
ontains disjoint unlinked 
opies of all embedded templates as subtemplates.We do not believe that the results of Theorem 3.3.5 hold for nonorientabletemplates: that is, we do not believe it is possible to re-embed, say, the horse-shoe template L(0; 1) in su
h a way that it 
ontains 
opies of every embeddedtemplate, or even the orientable ones. A related, though weaker statement ishowever true:Proposition 3.3.10 Any embedded non-orientable template T 
ontains a (non-isotopi
ally) embedded 
opy of all templates.Proof: If T is nonorientable, we must 
onstru
t an in
ation from the templateY of Figure 3.22 into T . Take a1 twisted and b1 untwisted with the pair
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ent. Then 
onsider 
 = a2b: 
1 is an untwisted orbit with a1 and 
1adja
ent and �ba2�1 and b adja
ent. Hen
e, there is a well-de�ned templatein
ation, R : Y ,! T 8>><>>: x1 7! ax2 7! a2x3 7! bx4 7! b : (3.49)As this in
ation is nonisotopi
, we have a di�erent embedding of all the subtem-plates of Y into T . 2Ostensibly, it seems surprising that the template for the Whitehead link
omplement (Figure 2.17) embeds in the horseshoe template L(0; 1).Remark 3.3.11 Although the results of this se
tion are ex
iting, they may alsobe 
ause for 
on
ern in 
ertain appli
ations: re
all from x2.3.5 the 
onstru
tionof indu
ed templates from time series data. Ko�
arev et al. derive an indu
edtemplate in [106℄ whi
h, by appealing to Theorem 3.3.7, we 
an show 
ontainsall embedded templates as subtemplates. In the literature on indu
ed templates,it is impli
it that the \physi
al" system may be expe
ted to 
ontain merely asubset of the knots and links on the indu
ed template. Hen
e, the use of thisindu
ed template would appear to be of limited appli
ability | it 
ontains fartoo mu
h.Remark 3.3.12 The theorems of this se
tion 
an be applied to the problem ofa

umulations of knots on a template from x3.1. In 
ontrast to Theorem 3.1.20,universal templates have no restri
tions on the types of a

umulations of knots.Theorem 3.3.13 (Ghrist [68℄) Let fKig be an arbitrary sequen
e of knot types,and let K be any 
hosen knot type. Then, on the universal template V, thereexists a sequen
e of distin
t 
losed orbits f
ig of knot type Ki, whi
h a

umulatesonto a 
losed orbit 
 of knot type K.This theorem sheds light on the 
lass of in�nite links 
ontained in universaltemplates: of 
ourse, not every in�nite link may live on a template, but there isno obstru
tion as far as a

umulations of knot types goes.Remark 3.3.14 A template 
ontains both topologi
al and dynami
al informa-tion. By \forgetting" the topology, one redu
es a template to a purely dynami
alobje
t. For example, if one takes the set of bran
h lines as a 
ross-se
tion to thesemi
ow, on obtains a set of 
oupled, expanding, one-dimensional maps. Or,if one 
ollapses a template along the dire
tion transverse to the semi
ow, oneobtains a dire
ted graph, whi
h de�nes a subshift of �nite type (
f. Remark1.2.22). Theorems 3.3.2 and 3.3.7 then yield as a s
holium a dynami
al result:Corollary 3.3.15 Let (�A; �) be an irredu
ible subshift of �nite type. Givenany N�N matrix of zeros and ones, B, there exists a lo
al 
ross se
tion �0 � �Asu
h that the return map r a
ting on this 
ross se
tion is 
onjugate to the subshiftde�ned by �B.
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oupled, expanding one-dimensional maps. These dynami
al results are, if not well-known, then at leastprovable through mu
h simpler methods than those of this 
hapter. Yet, we notethat the methods used in this 
hapter are by-and-large topologi
al: Alexander'sTheorem, braid groups, et
., are key tools. Thus, we are pleased that knot-theoreti
 tools 
an be brought to bear on a dynami
al problem. In the next
hapter, too, su
h tools will be shown to be useful in studying bifur
ations ofparametrized families of 
ows.



Chapter 4: Bifur
ationsIn Chapter 3 we derived general results on template knots and links. The themewas one of ri
hness and in
lusion: every template 
ontains in�nitely many dis-tin
t knot types; templates 
arrying unlinked, unknotted, untwisted orbits sup-port in�nite sequen
es of isotopi
 knots, and, most strikingly, \many" templateswith mixed 
rossings 
arry all knots and links (and even all templates).We now turn to issues of uniqueness and ex
lusion, asking how knowledge ofknotting and linking data implies restri
tions on families of periodi
 orbits andthe bifur
ations in whi
h they are 
reated. More spe
i�
ally, in a parametisedfamily of 
ows, periodi
 orbits appear and disappear in [often 
ompli
ated℄ se-quen
es of bifur
ations. But for three-dimensional 
ows, it is the link of periodi
orbits whi
h undergoes bifur
ations. Thus, if (1) we \dress" the periodi
 orbitset with knotting and linking information; and (2) we 
ompute the topologi
ala
tion of bifur
ations on orbits, we produ
e a set of bifur
ation invariants derivedfrom knot theory. This 
hapter will be a brief tour through several appli
ationsof this prin
iple.We begin with introdu
tory remarks on lo
al bifur
ation and 
ontinuation oforbit bran
hes and some elementary observations regarding the link stru
turesarising in saddle node and period-multiplying (doubling and Hopf) bifur
ationsfrom 
losed orbits. In x 4.2 we des
ribe a number of results on the horseshoetemplate H of Figure 2.9, the major ones being existen
e, non-existen
e anduniqueness theorems for families of torus knots of spe
i�ed dynami
al periods.These provide invariants whi
h distinguish orbits, permitting us to follow themfrom a 
haoti
 hyperboli
 set, ba
k to their birthpla
es in parameter spa
e,thereby determining genealogies and orders of pre
eden
e in a family of H�enonmaps. Se
tion 4.3 
ontains knot theoreti
 analogues of the self-similarity resultson bifur
ation sequen
es of the quadrati
 family (1.23) introdu
ed in x1.2.3.We show how a fa
torisation of kneading sequen
es 
orresponds to subtemplateswhi
h are embedded 
opies ofH, and indi
ate how this may be used to determinethe orbits impli
ated in iterated torus knots and more general 
abled stru
turesinvolving horseshoe knots and links. Perhaps the major interest in this workis the way in whi
h knot invariants a�ord a link (pun intended) between lo
albifur
ations and global questions.In the �nal se
tion we address global bifur
ations more expli
itly, des
ribingsome periodi
 orbit stru
tures that appear near homo
lini
 orbits to saddle-typeequilibria. We 
all attention to two types of topologi
ally signi�
ant global bifur-
ations | the gluing bifur
ations, and the bifur
ations surrounding a Shil'nikov
onne
tion. In the 
ase of gluing bifur
ations, the issue at hand is not ri
hnessof orbits (primarily only \simple" knots appear), but of 
ountable bifur
ationsequen
es. In stark 
ontrast, in the Shil'nikov s
enario, we �nd a general 
ase107
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ationsin whi
h the universal template V of x3.2 is 
ontained within the 
ow, therebygiving a set of (primarily dynami
al) suÆ
ient 
onditions under whi
h a givenODE 
ontains all knots and links among its periodi
 orbits. We 
lose with anexample of a pie
ewise linear ODE whi
h satis�es the ne
essary hypotheses: anexpli
it seed from whi
h all knots and links 
an be grown.This 
hapter provides merely a sample of numerous results whi
h have beenobtained for spe
i�
 systems. For further examples, see [87, 93, 88, 70, 118, 119,180℄. It is our hope that knotting and linking data will be
ome in
reasingly usefultools in the subtle business of tra
king global phenomena in the bifur
ations ofperiodi
 orbits.4.1 Lo
al bifur
ations and linksIn x1.2.3 we des
ribed the three 
odimension-one bifur
ations of maps: thesaddle-node, period-doubling, and Hopf bifur
ations (we also noted the symmet-ri
 pit
hfork bifur
ation). In the asso
iated three-dimensional 
ows obtained bysuspending these families, there are natural and simple impli
ations for knottingand linking of the periodi
 orbits involved. Spe
i�
ally, we have:Proposition 4.1.1 The periodi
 orbits impli
ated in a saddle-node or pit
hforkbifur
ation of a three dimensional 
ow are isotopi
 knots and have the samelinking number with any other orbit whi
h persists through the bifur
ation point.Proof: We dis
uss the saddle-node 
ase, as that of the pit
hfork is analogous.Consider the parametrised Poin
ar�e map on a small 
ross se
tion to the 
owtransverse to the orbit at the bifur
ation. Upon passing the parameter throughthe bifur
ation, the �xed point be
omes a pair of �xed points, one of whi
h (sayp1) is a saddle, the other of whi
h (say p2) is either a sour
e or sink.In the 
ase of p2 a sour
e and for parameter suÆ
iently 
lose to the bi-fur
ation, one bran
h of W s(p1) is a small segment 
ontained in W u(p2) withendpoints p1 and p2. Hen
e, in the suspension of the return map, the two pe-riodi
 orbits form the boundary 
omponents of an embedded annulus, and arethus isotopi
. 2Proposition 4.1.2 The periodi
 orbits 
reated in period-doubling and Hopf bi-fur
ations are 
ables of the original (bifur
ating) orbit.Proof: Following the proof of Proposition 4.1.1, one notes that the orbit ofperiod 2T 
reated in period-doubling bifur
ation is the boundary of a M�obiusband formed of the two-dimensional stable (or unstable) manifold asso
iatedwith the eigenvalue of the Poin
ar�e map passing through �1, whose 
ore is theoriginal period T orbit. As su
h, it is 
learly a 2-
able. Similarly, sin
e theq-periodi
 orbits 
reated in a Hopf bifur
ation approa
h those of the linearisedmapping (1.21) at the bifur
ation point, and this map is a rigid rotation by p=q,they are q-
ables of the 
ore period T orbit. As in Proposition 4.1.1, varying
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al bifur
ations and links 109the parameter suÆ
iently 
lose to the bifur
ation point 
reates an isotopy of theorbits in phase spa
e, whi
h preserves 
abling and linking. 2Remark 4.1.3 Hopf bifur
ations of maps resulting in periodi
 orbits are some-times 
alled period multiplying bifur
ations, although, as noted in x 1.2.3, thisname more properly refers to the spe
ial 
ase of (two-dimensional) area-preservingmaps. Here the determinant of the linearised mapping (equal to the produ
t ofthe eigenvalues) is 1 and so, as one varies a parameter, the eigenvalues of anellipti
 �xed point must traverse the unit 
ir
le, whi
h they 
an only leave at+1 (a saddle-node) or �1 (period-doubling). In this 
ase the parameter � and
ubi
 term (r3) in (1.21) are identi
ally zero, and the parameter of interest isthe rotation angle '. As ' passes ea
h value 2�p=q, a pair of q-periodi
 orbitsof rotation number p=q generi
ally bifur
ates from the ellipti
 
ore orbit, againleading to q-
ablings of the original orbit. See [122, 123℄, or the summary in [93℄for details.These results may be used to ex
lude 
ertain global orbit bran
hes and bi-fur
ations in generi
 three dimensional 
ows. Following Alexander and Yorke[2℄ and Kent and Elgin [104℄, we brie
y des
ribe an example: the \noose" bifur-
ation.We will need some de�nitions en
oding twisting information for orbits inthree-dimensional 
ows, following [2℄.De�nition 4.1.4 Let 
 be a periodi
 orbit in a three-dimensional 
ow havingasso
iated Poin
ar�e map with eigenvalues �1 and �2. Then 
 is said to be ellipti
if both eigenvalues have moduli satisfying one of the following 
onditions: either(1) the moduli are both greater than one; (2) the moduli are both less than one;or (3) the moduli are both equal to one with �i 6= �1. When j�1j < 1 < j�2j,
 is an unstable saddle orbit | here there are two sub-types, depending uponthe twist of the lo
al unstable manifold W ulo
(
), whi
h is a two-dimensionalribbon. (See Remark 1.2.18.) If the twist is even, so W ulo
(
) is an annulus, we
all 
 hyperboli
; if the twist is odd so that W ulo
(
) is a M�obius band, we 
all
 M�obius.Hyperboli
 orbits have positive real eigenvalues, M�obius orbits, negative ones.All generi
 (non-bifur
ating) periodi
 orbits belong to one of these three 
lasses.Note that this terminology di�ers from the standard usage in dynami
al systemstheory.The lo
al bifur
ation results of Propositions 4.1.1 and 4.1.2 
an now be aug-mented. We �rst note that, for 
ows on orientable three-manifolds, the Poin
ar�emaps are ne
essarily orientation preserving, implying that �1�2 = det(DP ) > 0.In a 
odimension one saddle-node, one eigenvalue �1 = +1, the other beingbounded away from the unit 
ir
le. It follows that, of the two orbit bran
hes
reated, one is ellipti
 and the other hyperboli
. Similar observations apply tothe pit
hfork bifur
ation, in whi
h either an ellipti
 orbit be
omes hyperboli
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ationsand gives birth to two new ellipti
 orbits, or a hyperboli
 orbit be
omes ellipti
and two hyperboli
 orbits are born: see Figure 4.1.In 
ontrast, in the period-doubling bifur
ation, sin
e the 
riti
al eigenvalueis �1 = �1 and the asso
iated lo
al invariant (
enter) manifold has odd twist,the bifur
ating (period q) orbit is M�obius on one side of the bifur
ation pointand ellipti
 on the other. The period 2q orbit whi
h bifur
ates o� 
an be seen asbounding a M�obius band whi
h is the lo
al (weak) stable or unstable manifoldof the period q 
ore orbit. Sin
e it goes around twi
e before 
losing, its twistis ne
essarily even. Thus it is either hyperboli
 (if of saddle type) or ellipti
 (ifstable, neutral or unstable): see Figure 4.1.SN PF PDellipti
hyperboli
M�obiusFigure 4.1: Lo
al bifur
ations of orbits, labeled as ellipti
, hyperboli
, andM�obius.De�nition 4.1.5 Let 
 be a hyperboli
 or M�obius periodi
 orbit. The self-linking number of 
 is de�ned ass`k(
) = `k (
0; 
) ;where 
0 is a boundary 
omponent of the lo
al unstable manifold W ulo
(
).Lemma 4.1.6 Self-linking number is invariant along a 
ontinuous bran
h oforbits in parameter spa
e so long as it is well-de�ned and the orbit path doesnot 
hange type. In addition, s`k(
) is always odd for a M�obius orbit, and, in
hanging from a M�obius to a hyperboli
 orbit, the self linking number doubles.Proof: Invarian
e follows as before from the fa
t that a path of orbits in param-eter spa
e avoiding bifur
ations gives an isotopy of the lo
al unstable manifold.The remaining fa
ts are easily shown with a pi
ture or two, and are left as in-stru
tive exer
ises for the reader. 2Note that s`k may be either odd or even for hyperboli
 orbits. In addition,when an orbit 
hanges type from M�obius or hyperboli
 to ellipti
, self-linking is
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1
2 
e
hFigure 4.2: A bifur
ation diagram 
ontaining a noose.lost.Following work of Alexander-Yorke [2℄ and Kent-Elgin [104℄, we 
onsider thebifur
ation diagram pi
tured in Figure 4.2: a bran
h of orbits loops ba
k througha saddle node bifur
ation to join itself in a period-doubling. Topologi
ally, thisrequires one of the orbits born in the saddle-node to wrap around its partner asthe boundary of a M�obius band. While this sort of bifur
ation 
an generi
allyo

ur in 
ows of dimension four and higher, there are nontrivial restri
tions indimension three:Proposition 4.1.7 (Kent and Elgin [104℄) For a 
ow on R3 parametrised by�, the \noose" pi
tured in Figure 4.2 is impossible.Proof: This is an exer
ise with linking, self-linking, and twist. The noosejoins at a period-doubling point; hen
e the smaller period orbit 
1 impli
ated init starts either as a M�obius or an ellipti
 orbit, while the longer period one 
2is ellipti
 or hyperboli
. In either 
ase, while both orbits 
oexist, `k (
1; 
2) isodd, and, if 
2 is hyperboli
, s`k (
2) is even.We further augment Proposition 4.1.1 by noting that the twist of the two-dimensional lo
al invariant (
enter) manifold asso
iated with the bifur
atingeigenvalue (+1) at a saddle-node is inherited by both the ellipti
 (
e) and hy-perboli
 (
h) orbits produ
ed. Sin
e dire
tly after bifur
ating 
h and 
e are\parallel" on this band, the self-linking number of the hyperboli
 orbit satis�ess`k(
h) = `k(
e; 
h). The fa
t that `k(
1; 
2) is odd near the period doublingimplies that `k(
e; 
h) must likewise be odd, so that s`k(
h) is odd. But weshowed that for the hyperboli
 orbit, self-linking is even. 2Remark 4.1.8 Alexander and Yorke [2℄ have developed an index theory fordealing with general bifur
ation diagrams. They, as well as Kent and Elgin[104℄, have found 
ertain types of nooses whi
h 
an live in three-dimensional
ows; however, these allowable nooses involve nongeneri
 behaviour, su
h aspit
hfork bifur
ations, or intri
ate hetero
lini
 
onne
tions. Statements moregeneral than that of Proposition 4.1.7 
an be made whi
h ex
lude these unusual
ases.
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ationsHaving indi
ated how knotting and linking may be used to ex
lude 
ertainglobal phenomena in bifur
ation behavior, we pro
eed to a more 
ompli
atedinstan
e asso
iated with a parti
ular template.4.2 Torus knots and bifur
ation sequen
esThe horseshoe template may be derived from a 
ow embedded in a solid torus, asindi
ated in x2.3. The underlying ve
tor �eld often models a periodi
ally for
edos
illator. As su
h, the template's (single) bran
h line 
orresponds naturally toa global 
ross se
tion in the original 
ow, and the number of interse
tions ofa periodi
 orbit with the bran
h line is the dynami
al as well as the symboli
period of the knot (
f. Remark 2.4.5). This observation prompts the following:De�nition 4.2.1 Given a (p; q) torus knot, we say it is a resonant torus knot ifit has period q.Re
all, we may take p < q without a loss of generality.Example 4.2.2 Consider the word w1 = (x1x22x1x2)1, of period �ve. Todetermine whether it is a torus knot, we draw it on the horseshoe template H.The �ve points in the interse
tion of the knot with the bran
h line of H haveaddresses f�k(w1) : k = 0; 1; 2; 3; 4g. To determine the order in whi
h thesepoints are traversed as one follows the knot, we use the pres
ription of x1.2.3,and 
ompute the invariant 
oordinates of w1 and its shifts:Word Invariant 
oordinate Orderingw = (x1x2x2x1x2)1 � (w) = x1x2x1x1x2 : : : 0� (w) = (x2x2x1x2x1)1 �(� (w)) = x2x1x1x2x2 : : : 2�2(w) = (x2x1x2x1x2)1 �(�2(w)) = x2x2x1x1x2 : : : 3�3(w) = (x1x2x1x2x2)1 �(�3(w)) = x1x2x2x1x2 : : : 1�4(w) = (x2x1x2x2x1)1 �(�4(w)) = x2x2x1x2x2 : : : 4Drawing a simple 
losed 
urve on H whi
h passes through the bran
h line pointsin the pres
ribed order above yields the knot 
orresponding to w1, as shownin Figure 4.3(a). The reader 
an perform Reidemeister moves to obtain Fig-ure 4.3(b), revealing that (x1x22x1x2)1 is a (2; 5) resonant torus knot. Similarly,it 
an be veri�ed that (x21x2x1x2)1, also of period �ve, 
orresponds to a (2; 3)torus knot, and hen
e is not resonant.Numerous statements 
an be made regarding existen
e and uniqueness fortorus knots and resonant torus knots on the horseshoe template. Before givingthe �rst of these, whi
h requires a lengthy proof, we state a simpler result onpairs of orbits arising in saddle node bifur
ations. The key idea throughout thisand the following se
tion involves mapping sets of words to knot types, and weuse extensively the ordering of points on the bran
h line via symboli
 dynami
sand kneading theory of x1.2.3. In doing so, we refer to the return map fHindu
ed on the bran
h line by the semi
ow.
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Figure 4.3: (a) The orbit (x1x22x1x2)1 is (b) a resonant (2; 5) torus knot.Given two words 
orresponding to template knots, it is generally diÆ
ultto determine if the knots are isotopi
. As noted earlier, this is relevant to theasso
iated bifur
ation behavior; e.g., upon varying parameters in a 
ow, non-isotopi
 orbits 
annot 
ollapse onto one another in saddle-node bifur
ations.However, in some 
ases we 
an perform isotopies on the template to obtain su
hresults.Lemma 4.2.3 Let w1 be a periodi
 point on �H whi
h is minimal with respe
tto � among all its shifts. Then, if the words wx1x2 and wx22 are both a
y
li
,then the knots on H 
orresponding to (wx1x2)1 and �wx22�1 are isotopi
.Proof: Let fpign0 and fqign0 be the points at whi
h the orbits (wx1x2)1 and�wx22�1 respe
tively interse
t the bran
h line. These 
orrespond symboli
allyto all shifts of the words wx1x2 and wx22. By Proposition 1.2.47, the minimalityof these words implies that p0 < pk;8k 6= 0 and pn > pk;8k 6= n, and similarlyfor q0 and qn. Sin
e the semi
ow takes pn�1 to pn and pn is maximal among thepi points, then among all the pi points on the left half of the bran
h line (that is,the strip x1), pn�1 is maximal. Similarly, sin
e the template semi
ow reversesorientation on the right side (the strip x2), then among all the qi points on thex2 strip, qn�1 is minimal. Thus, pn�1 and qn�1 lie on opposite sides of the gapin the bran
h line, with no other strands between them. From Figure 4.4 it is
lear that one may lift the strand passing through pn�1 over the gap to qn�1,obtaining the desired isotopy. 2
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pn�1 pn
qn�1 qnFigure 4.4: (wx1x2)1 is isotopi
 to �wx22�1.Example 4.2.4 For example, the pair x1x22x1x2 and x1x22x2x2(= x1x42) formsu
h a minimal a
y
li
 pair. As noted above, �x1x22x1x2�1 is a (2,5) torus knot;thus, so is �x1x42�1.De�nition 4.2.5 Two minimal a
y
li
 words of the form wx1x2 and wx22 are
alled a bifur
ation pair. These two words have di�ering x2-parities: we denotethat with even x2-parity male and that with odd x2-parity female.Remark 4.2.6 The reason for the terminology of De�nition 4.2.5 is as follows:re
all that the return map for H indu
ed by the bran
h line 
an be 
onsidered asa member of the quadrati
 family of maps (x1.2.3). If we then regard horseshoeknots as periodi
 orbits 
reated as one passes through a sequen
e of quadrati
maps, Proposition 1.2.48 implies that the male-female pair from De�nition 4.2.5is 
reated simultaneously in a saddle-node bifur
ation. In this and the followingse
tion, we will freely pass from thinking of �nite words in fx1; x2g as horseshoeknots or as periodi
 points in the quadrati
 family. These \genders" re
e
t therole played by the knots in orbit genealogies, to be detailed in x4.3.Lemma 4.2.3 does not imply that all knots 
ome in isotopi
 pairs. Take,for example, the period four orbit �x1x32�1, whose bifur
ation partner would be(x1x2x1x2)1: a 
y
li
 extension of the period two word x1x2. Evidently x1x32has no partner. Su
h a \pseudo-pair" is related to a period-doubling bifur
ation
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ation sequen
es 115within the quadrati
 family, in analogy to the saddle-node pairs of Remark 4.2.6:
f. x4.3.Other results similar to Lemma 4.2.3 are possible. The following is a 
orollaryto Proposition 3.1.19, easily proved in this spe
ial 
ase by removing an \x1-loop"via the �rst Reidemeister move:Corollary 4.2.7 If w is minimal, then the knots 
orresponding to �xk1w�1 areisotopi
 for all k � 0.Before stating the main theorem of this se
tion, we need a further result whi
henables us to easily determine the braid index for a 
lass of positive braids (re
allDe�nition 1.1.23).Theorem 4.2.8 (Franks and Williams [58℄) For a positive braid on p strands
ontaining a full twist on p strands, the braid index is p.The proof of Theorem 4.2.8 uses Jones polynomials and is beyond the s
opeof this book.4.2.1 Horseshoe torus knotsTheorem 4.2.9 (Holmes and Williams [93℄) Among the (p,q) torus knots onH, there are:1. exa
tly two resonant torus knots for ea
h q > 2p, and in�nitely manynonresonant torus knots of arbitrarily large period;2. no resonant torus knots for q < 2p;3. no torus knots at all for q < 3p=2.In addition to supplying a spe
i�
 instan
e of an in�nite 
olle
tion of distin
tknot types on H (whi
h we expe
t from Theorem 3.1.15), this theorem revealsthat the resonant torus knots are surprisingly sparse. It also suggests that theadditional positive half-twist on H makes it more \rigid" than the Lorenz tem-plate L(0; 0), whi
h 
ontains all torus knots by Theorem 2.3.3.Outline of proof: To prove the existen
e of the resonant torus pair for q > 2p,we extra
t a subset S from the horseshoe template (S is not a subtemplate asthere are no bran
hes). In Figure 4.5 we show H without its ends identi�ed. Weremove portions on the edges of the x1-bran
h and the 
enter of the x2-bran
h(a neighborhood of the orbit x2), yielding three strips whi
h 
an be laid on a
ylinder. Identifying the ends of the 
ylinder, we have a torus T 2 on whi
h Slies.A (p; q) resonant torus knot has q strands traveling p times meridionallyabout T 2. We 
onstru
t one by pla
ing p strands on ea
h of the two x2-stripsand q�2p strands on the x1-strip of S (see Figure 4.5). The partner is obtained
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Figure 4.5: The resonant torus knots on H.by reversing the isotopy in the proof of Lemma 4.2.3, lifting the leftmost x2-strand over to form the rightmost x1-strand.To spe
ify the words for this pair, write a string of x1's of length q � 2pfollowed by two strings of x2's, ea
h of length p. The �rst word is produ
edby 
ounting forward in multiples of p mod q: beginning at the �rst x1 andre
ording the appropriate letter, ea
h time advan
ing p letters and \wrappingaround" where ne
essary, regarding the sequen
e as periodi
ally extended. Thepartner derives from Lemma 4.2.3, on 
hanging the penultimate letter from x2to x1. The �rst x2 in the �rst group of p x2's is the ambivalent term for thepair, denoted below by x�. Note that these words have x1's and x2's distributedin the most uniform manner possible, subje
t to the required relative number2p=q or (2p � 1)=q of x2's. Hen
e they are sometimes 
alled evenly distributedwords [91℄.Example 4.2.10 To determine the (3,11) resonant torus pair, write out thepres
ribed string of x1's and x2's:11� 2 � 3z }| {x1 x1 x1 x1 x1 j 3z }| {x2 x2 x2 j 3z }| {x2 x2 x2; (4.1)then, 
ounting terms mod 11, one gets x1 x1 x2 x2 x1 x1 x2 x2 x1 x2 x2. Hen
e,the resonant torus knot pair is given by (x21x22)2x1x�x2 .Given any pair of resonant torus knots, Corollary 4.2.7 immediately yieldsin�nitely many more isotopi
 but nonresonant ones, of periods q + 1; q + 2; : : :.
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ation sequen
es 117The uniqueness proof is more 
ompli
ated. The idea, due to Williams, is torearrange orbits on the template H in minimal or \well-disposed" braid formand use braid index and genus invariants together with dynami
al period. Thedetails appear in [93℄; here we sket
h only prin
ipal ideas.To apply Theorems 1.1.18 and 4.2.8 in 
omputing genera and braid indi
es,we must transform orbits on H into the appropriate form:Proposition 4.2.11 With the ex
eption of the orbits x11 and x12 , every orbiton H may be arranged as a positive braid having a full twist.Proof: We �rst perform a DA-splitting on the x12 orbit, 
reating an isolatedsour
e (what was x12 ) linking the DA-modi�ed template, whi
h has a new bound-ary 
omponent 
orresponding to �x22�1. This DA modi�
ation a�e
ts only thex12 orbit (whi
h is to be
ome the braid axis) and the new boundary 
omponent:all other orbits are un
hanged.After removing the braid axis and propagating the bran
h line gaps ba
k,loops are transformed into full twists, via the belt tri
k, as illustrated in Figures4.6-4.8. The template is thereby transformed to a positive braid with the ex-
eption of a loop at the top, 
orresponding to the x1-strip of H. For any givenlink with total number of 
onse
utive x1's bounded, we may split the x1 bran
hline repeatedly as before and pull ea
h 
url out via the belt tri
k, produ
inga subtemplate of H 
ontaining the link as a positive braid with (at least) oneand one-half full twists: more than suÆ
ient for appli
ation of Theorem 4.2.8. 2Equipped with this \normal form" forH and given a knot with periodi
 wordw = xa11 xb12 xa21 xb22 : : : xak1 xbk2 , we de�ne syllables to be of the form xn1x2; xn1x22;or x22, for arbitrary n > 0. Figure 4.6 reveals that, apart from the trivial wordsx1 and x2, ea
h word has a unique syllabi
 de
omposition and ea
h syllable
orresponds to a single strand on the minimal template. Thus, via Theorem4.2.8 we have:Proposition 4.2.12 The braid index of a horseshoe knot equals the number ofsyllables in its word w.Example 4.2.13 The knot x21x2x1x2x31x32 has braid index four via the de
om-position (x21x2)(x1x2)(x31x2)(x22).To prove uniqueness of resonant torus knots, one shows that, among all braidson p-strands whi
h 
ross the bran
h line q times, in
luding multi
omponent links,the members of the (p; q) torus knot pair alone maximize the genus. This is donevia Theorem 1.1.18 by maximizing the 
rossing number 
 of q-period p-braidson the positive braid template, in a manner similar to the proof of Corollary3.1.11. The 
al
ulations are presented in full in [93℄. This 
ompletes the proof ofpart (1) in Theorem 4.2.9. The proof of (2) follows from the same 
al
ulationsperformed for part (1).
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Figure 4.6: Moves to obtain the minimal template (1).The proof of part (3) is simpler, and provides a ni
e example of the use ofknot invariants. As one 
an verify, the braid word for a full twist on n-strandsis (�1�2 : : : �n�1)n; (4.2)and thus, a full twist 
ontains (n� 1)(n) 
rossings. The minimal braid templatein
ludes three half-twists and so any braid � with braid index b(�) = p musthave 
rossing number 
(�) � 32 (p � 1)(p). Thus, applying Theorem 2.2.4 to a(one 
omponent) knot, we have:2g(�) � 32(p� 1)(p)� p+ 1;or g(�) � (p� 1)( 32p� 1)2 :But, re
alling from x1.1.4 that the genus of a (p; q) torus knot is 12 (p� 1)(q� 1),we 
on
lude that, in order to satisfy(p� 1)(q � 1)2 � (p� 1)( 32p� 1)2 ;we must have q > 3p=2. 2
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Figure 4.7: Moves to obtain the minimal template (2).4.2.2 Bifur
ation reversal in the H�enon mapTheorem 4.2.9 implies that for ea
h pair of relatively prime positive integers (p; q)with q > 2p, the 
ow in the suspension of the horseshoe map has a unique pairof resonant (p; q) torus knots. We will now relate this information to bifur
ationsequen
es involving su
h orbit pairs in the H�enon map (2.12). As noted in x2.3.2,for � > 14 (5 + 2p5)(1 + �2), the map F�;� has a horseshoe and so, suspendingthis family as in Figure 2.9, we have the resonant torus knots des
ribed above.For the 
ase � = 1, the map F�;� be
omesF�;1 : � u 7! vv 7! �u+ �� v2 ; (4.3)an area-preserving family. Elementary 
al
ulations show that, at � = �1, F�;1undergoes a saddle-node bifur
ation, 
reating an ellipti
 �xed point whi
h per-sists in the interval � 2 (�1; 3). In
reasing � from �1 to 3, ea
h member ofthe eigenvalue pair travels around the unit 
ir
le monotoni
ally, taking on allvalues (e2�i�; e�2�i�) beginning at (+1;+1) for � = �1 and ending at (�1;�1)for � = 3. Using normal forms, Holmes and Williams [93℄ show that as theeigenvalues of DF�;1 pass through ea
h pair (e2�ip=q ; e�2�ip=q) for p; q relativelyprime, q > 2p, and q � 5, the map F�;1 undergoes a generi
 resonant area-preserving Hopf bifur
ation, 
reating a pair of isotopi
 orbits. In the naturalsuspension of the map, one uses Proposition 4.1.2 to show that this pair is a(p; q) resonant torus knot pair. The order in whi
h the eigenvalues pass throughthe points (e2�ip=q ; e�2�ip=q) determines the bifur
ation sequen
e. By a 
om-
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Figure 4.8: Moves to obtain the minimal template (3).pli
ated argument involving symmetry properties of the map F�;1 and linkingdata on the q-
ables themselves, one shows that the resonant bifur
ation pair lieon a 
ontinuous bran
h of resonant torus knots whi
h 
an be followed from thebifur
ation point to � arbitrarily large, thus identifying them with the uniqueresonant pair and enabling one to employ the uniqueness part of Theorem 4.2.9to arrive at the following:Proposition 4.2.14 Given the sequen
e of pairs of relatively prime positiveintegers f(pi; qi)g+1�1 with q > 2p and q � 5 ordered via i < j if and only ifpi=qi < pj=qj, let �1i be the �-value at whi
h the natural suspension of the mapF�;1 
reates the unique pair of (pi; qi) resonant torus knots. Then i < j if andonly if �1i < �1j .For the 
ase � = 0, the map F�;� be
omesF�;0 : � u 7! vv 7! �� v2 ; (4.4)the dynami
s of whi
h immediately 
ollapse to those of the one-dimensionalquadrati
 map f� : x 7! � � x21 des
ribed in x1.2.3. Kneading theory provides
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ables 121a 
omplete ordering of the bifur
ations of f� via the kneading invariants �(w).Here the 
ontinuation with in
reasing � of orbits on
e 
reated is assured bythe monotoni
ity of the kneading invariant. One uses the algorithm given asExample 4.2.10 of x4.2.1 to 
onstru
t the words 
orresponding to su
h (p; q) res-onant torus partners. Computing the asso
iated kneading invariants (via (1.24)),Proposition 1.2.48 allows us to order these resonant torus pair bifur
ations. Thisyields:Proposition 4.2.15 Given the sequen
e of pairs of relatively prime positiveintegers f(pi; qi)g+1�1 with q � 2p ordered via i < j if and only if pi=qi < pj=qj ,let �0i be the �-value at whi
h the natural suspension of the map F�;0 
reates theunique pair of (pi; qi) resonant torus knots. Then i < j if and only if �0i > �0j .We note that the kneading theory behind Proposition 4.2.15 applies to anyunimodal fun
tion of v in pla
e of �� v2 in F�;0. Thus, the 
on
lusion holds fora far wider 
lass of mappings than the H�enon family.These propositions together imply the following remarkable result [93, 87℄:Theorem 4.2.16 (Holmes and Williams [93℄) In the bifur
ation diagram of themap F�;�, in�nitely many saddle-node bifur
ation 
urves 
ross one another onthe (�; �) parameter plane between � = 0 and � = 1. In parti
ular, ea
h resonanttorus bifur
ation sequen
e for the area-preserving 
ase (� = 1) is exa
tly reversedin the one-dimensional 
ase (� = 0).Thus, �xing � 2 [0; 1℄, and in
reasing �, we obtain in�nitely many di�erentbifur
ation sequen
es leading to a horseshoe: loosely speaking { in�nitely manyroutes to 
haos. However, this behavior does not imply similar reversals forother orbits. For example, the (2,3) non-resonant torus knots of periods 4,5,6: : :do not reverse their order in this way; instead, as an a

umulating family of thetype des
ribed in Theorem 3.1.20, their bifur
ation 
urves are all \parallel:" 
f.Holmes and Whitley [92℄.4.3 Self-similarity and horseshoe 
ablesGiven the 
orresponden
e between knotted orbits on the horseshoe template andbifur
ations of the one-dimensional quadrati
 family tou
hed on in x4.2, we nowexplore this latter family of maps in greater detail.Denote by f� the map whi
h takes x to �� x21, where f� a
ts on the inter-val I(�) = h� 12 �q�+ 14 ; 12 +q�+ 14i (this interval grows as � ranges over[� 14 ; 2℄). The bifur
ation set of this map has a remarkable self-similar stru
-ture: given any positive integer M , there exists at least one subset J , of thephase-parameter spa
e for whi
h fM� ��J � f�; (4.5)
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onjuga
y. Figure 4.9 illustrates the 
ase M = 3: f3� restri
tedto a subinterval [�; �℄ has the same bifur
ation sequen
e on some ��subintervalas does f� on [� 14 ; 2℄). This is the basis for a renormalization group theory (see[95, 96℄) whi
h shows that bifur
ation sequen
es are nested within themselves.The simplest su
h nesting leads to the well-known period-doubling 
as
adesstudied metri
ally by Feigenbaum and others (see [41, 199℄).

Figure 4.9: f3� and a magni�
ation.Orbits in the quadrati
 map are 
reated in a very spe
i�
 order, governedby the kneading invariants (Proposition 1.2.48). As we have seen in x4.2.2, ahorseshoe may be \built" through a variety of distin
t paths; nevertheless, bytaking the bran
h line of H as a Poin
ar�e se
tion for the semi
ow, we re
over the\full" quadrati
 map as a return map. Thus, as per Remark 4.2.6, we may speakof two horseshoe knots being a saddle-node pair, based on the 
orrespondingtheory for the one-dimensional return map.In this se
tion, we explore the impli
ations of the bifur
ation stru
tureswithin f� on knot and link types and on subtemplate stru
tures within thetemplate H. We �rst outline an extension to the simple kneading theory intro-du
ed in x1.2.3, and use it to show how 
ertain 
lasses of words 
orrespond toknots inhabiting subtemplates of H. This material is drawn from [88℄, in whi
hthe idea of subtemplates �rst appeared, but the proof of the main result (The-orem 4.3.8) is reformulated and simpli�ed in terms of the template in
ationsintrodu
ed in Chapter 2.4.3.1 Kneading fa
torization and subtemplatesThe kneading invariant introdu
ed in x1.2.3 provides a 
onvenient symboli
 toolfor analyzing iterated stru
tures on the template. For the horseshoe template,the kneading invariant �(a1) of a periodi
 orbit a1 is a sequen
e given by (1.24)whi
h, via Proposition 1.2.48, allows one to order the �-values at whi
h the orbitsappear in bifur
ations of the one-dimensional map f�. In 
ases where �(a) isperiodi
, we refer to it by the periodi
ally repeated unit, with the supers
ript 1dropped.
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ables 123We now des
ribe a fa
torization of su
h kneading sequen
es.De�nition 4.3.1 For w an a
y
li
 minimal word w = w1w2 : : : wk and v anyword v = v1v2 : : : (not ne
essarily �nite), de�ne w � v to be the sequen
e of
on
atenated words w � v = wv1wv2wv3 : : : (4.6)where wx1 = w = w1w2 : : : wkand wx2 = ŵ = ŵ1ŵ2 : : : ŵk :Re
all from x1.2.3 that x̂1 = x2 and vi
e versa.Example 4.3.2x1x2 � x1x1x2 = x1x2 x1x2 x2x1= x1x2x1x22x1x1x2 � x1x2x2 = x1x2 x2x1 x2x1= x1x22x1x2x1x1x1x2 � x1x2x1x1x2 : : : = x1x1x2 x2x2x1 x1x1x2 x1x1x2 x2x2x1 : : :Any kneading invariant � whi
h 
an be expressed as a �-produ
t of two ormore nonempty words is said to be �-fa
torizable, otherwise it is �-prime. The �-fa
torization is parti
ularly useful in des
ribing period multiplying bifur
ations.For example, in the period-doubling bifur
ation of a period-k orbit with periodi
kneading invariantw, the new orbit of period 2k has kneading invariantw�x1x2.The �-produ
ts 
an be iterated to form longer, more 
ompli
ated fa
torizations.The self-similarity for the quadrati
 map f� in (4.5) is naturally expressedin terms of kneading sequen
es and �-fa
torization (see [88℄):Lemma 4.3.3 Let u;v and w be kneading invariants, where w is �nite. Thenw � u�w � v if and only if u� v.Proof: By Equation (4.6), w � u = wu1wu2 : : :w � v = wv1wv2 : : : :Let K denote the index of the �rst letter at whi
h u and v di�er; hen
e,uK = x1; vK = x2. Sin
e w is a kneading invariant, it follows from (1.24)that w1 = x1. Thus, wuK �wvK and w � u � w � v. Reversing the argumentyields the lemma. 2Remark 4.3.4 In 
onjun
tion with Proposition 1.2.48 and Equation (1.24),Lemma 4.3.3 implies the self-similarity in the bifur
ation stru
ture stated inEquation (4.5). In
reasing � 
reates periodi
 orbits in the order of in
reasing �
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ationsfrom x11 to (x1x2)1, to (x1x2)�(x1x2), et
., ad in�nitum. For any �nite �-primekneading words u�v, all kneading sequen
es of the form u �w, for all w, mustpre
eed v; hen
e, the entire bifur
ation sequen
e of f� is \embedded" withinitself, so that fM� restri
ted to some subinterval in � undergoes the \same"sequen
e as f� itself.Re
all from De�nition 4.2.5 that male knots have even x2-parity and femaleknots, odd x2-parity. The kneading theory for unimodal maps implies thatmales are 
reated in saddle-node bifur
ations and females in either saddle-nodes(along with males) or, partnerless, in period-doubling bifur
ations. Dire
tlyafter either su
h bifur
ation, both orbits impli
ated in it share the same symbolsequen
e. After the saddle node, that destined to be
ome female 
hanges gendervia one point on it 
rossing the 
riti
al point 
; the male's sequen
e remains asit began, 
onsistent with a positive eigenvalue. After a q ! 2q period doubling,the doubled orbit, whose sequen
e, regarded as 2q-periodi
, starts out male,similarly 
hanges gender by losing or gaining an x2 as a point of it passes 
.(Re
all that the eigenvalue of the (iterated) maps are respe
tively 1 and �1 inthese bifur
ations.) These observations imply the following (for details see [88℄):Lemma 4.3.5 Let w be a q-periodi
 kneading invariant. Corresponding to wand w � x1x2, there exist two horseshoe periodi
 orbits, (a0)1 and (a)1 2 �H,su
h that:1. w = �((a)1) = �((a0)1);2. if w 6= u � x1x2 for any kneading invariant u, then (a0)1 and (a)1 are amale-female pair of isotopi
 period-q orbits 
reated in a saddle-node bifur-
ation;3. if w = u � x1x2 for some kneading invariant u, then (a0)1 and (a)1 areboth female knots impli
ated in a period-doubling bifur
ation and havingrespe
tive periods q and 2q.De�nition 4.3.6 Let fwign1 denote a 
olle
tion of qi-periodi
 kneading invari-ants for some n > 1, and W = w1 �w2 � � � � �wn be the Q = Qni=1 qi-periodi
kneading invariant formed by iterated �-multipli
ation. A periodi
 horseshoe or-bit (a)1 having kneading invariant �((a)1) =W is 
alled an iterated horseshoeknot with de�ning sequen
e W .The fa
torization of kneading invariants be
omes the dynami
al ba
kbone foran elegant interpretation of self-similarity in the bifur
ations of the horseshoe.The topologi
al analogue of the �-fa
torization is a generalization of the satellite-
ompanion 
onstru
tion for knots (De�nition 1.1.10):De�nition 4.3.7 Let T be a template braided within a standardly embeddedsolid torus V = D2 � S1, and let K be a knot (in a di�erent 
opy of S3) withtubular neighborhood N(K) homeomorphi
 to V via h : V ! N(K). Then thetemplate given by h(T ) is a satellite of T with 
ompanion K.
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ables 125Theorem 4.3.8 (
f. Holmes [88℄) Let W = w1 � w2 � � � � � wn be a periodi
kneading invariant whi
h does not fa
tor as u � (x1x2) for any kneading invari-ant u. Also, denote by (a0)1 and (a)1 2 �H the male-female pair of knotsasso
iated to W via Lemma 4.3.5. Then, all the iterated horseshoe knots of theform W �v 
oin
ide with the 
losed orbits on a parti
ular subtemplate HW � Hwhi
h is the satellite of either the standard horseshoe template H or the \twisted"horseshoe template ~H (pi
tured in Figure 4.10), with the knot 
orresponding to(a)1 as 
ompanion.
x1 x2

Figure 4.10: The \twisted" horseshoe template ~H.Proof: Let (a0)1 be the (Q-periodi
) itinerary of the male horseshoe knot havingkneading invariant �((a0)1) = W and let (a)1 
orrespond to the female knothaving kneading invariant �((a)1) =W � x1x2 as per Lemma 4.3.5. Denote byb be the subword a1a2 : : : aQ�2 of a (or, equivalently, a0).Assume �rst that b has odd x2-parity; then, 
onsider the in
ationEW : H ,! H � x1 7! x2bx1x2 7! x2bx2 : (4.7)The image of this map is a template sin
e E preserves the twist orientation of
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ationsx11 and x12 , and sin
e the image of the bran
h segments,�1(EW(H)) = EW([x11 ; x1x2x11 ℄)= [((x2bx1))1 ; x2bx1x2bx2 (x2bx1)1℄;�2(EW(H)) = EW([(x2)2x11 ; x2x11 ℄)= [(x2bx2)2 (x2bx1)1 ; x2bx2 (x2bx1)1℄: ; (4.8)is a set of nonoverlapping intervals on the bran
h line (this may be veri�ed usingthe �-ordering and the fa
t that b is of odd x2-parity).By Lemma 4.3.5, the knots 
orresponding to (a)1 and (a0)1 on H are iso-topi
: the isotopy is merely that of Lemma 4.2.3 | the rightmost strand of theknot for (a0)1 on the x1 strip of H is lifted over the bran
h line gap to theleftmost strand of the knot for (a)1 on the x2 strip. Sin
e the periodi
 orbits(a)1 and (a0)1 form a \spine" for the subtemplate E(H), the isotopy may beextended to the strip 
ontaining (a0)1. Hen
e, the subtemplate E(H) may beisotoped in S3 to lie within a tubular neighborhood of the knot 
orrespondingto (a)1. This yields a presentation of HN = E(H) as a satellite template with
ompanion (a)1.To show that HN 
ontains pre
isely the iterated horseshoe knots, observethat W and W �x1x12 are respe
tively the smallest and largest kneading invari-ants of the form W � v for any v. Hen
e, all orbits with kneading invariantsof this form must lie between the horseshoe words having kneading invariantsW and W � x1x12 . But these 
orrespond pre
isely to the boundary 
omponentsE(x11 ) and E(x2x11 ) of the subtemplate.In the 
ase where the x2-parity of b is even, we must modify the in
ation Eto one whi
h respe
ts even and odd twisting of orbits. An analogous proof tothat above, applied to the in
ation~EW : ~H ,! ~H � x1 7! x2bx2x2 7! x2bx1 ; (4.9)shows that the subtemplate 
ontaining the iterated horseshoe knots is a satelliteof the \twisted" horseshoe template ~H. 2Example 4.3.9 Let W = x1x32x1, so that a0 = x1(x1x2)2 and a = x21x32. Thein
ation is: Ex1x32x1 : H ,! H � x1 7! x2(x21x2)x1x2 7! x2(x21x2)x2 :Figure 4.11 shows that, after an isotopy, HN is a satellite of H with 
ompaniona trefoil, having an additional four full twists.Similarly, the net twisting for HN with W = x1x22x1x2 is odd. Re
allingExample 4.2.2, the reader may like to 
he
k that this subtemplate is a satelliteof the twisted horseshoe ~H with 
ompanion a (2; 5) torus knot, having four andone-half full twists.
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Figure 4.11: the subtemplate for W = x1x32x1. (a0)1 is shown solid, (a)1dashed.In this sense, the male-female pair (a0)1 ; (a)1 give rise to a family of iteratedhorseshoe knots whi
h remain 
lose to them in that they lie on the subtemplateHN . We refer to (a0)1 and (a)1 as the father and mother knots respe
tively;the iterated knots are their 
hildren. From Theorem 4.3.8, we observe that (a)1
an be viewed as the 
ore of an embedded torus, with (a0)1 on its boundary andall subsequent 
hildren following (a)1 without doubling ba
k. Hen
e, iteratedhorseshoe knots are examples of the generalized 
ablings dis
ussed in x1.1.2.4.3.2 Nested periodi
 orbits and iterated torus knotsThe self-similarity in the bifur
ation stru
ture of the quadrati
 family is not theonly example of dynami
al self-similarity. A very important and well-known
lass of examples is given in the KAM theory for ellipti
 �xed points of anarea-preserving di�eomorphism [122, 123℄. Let F : R2 ! R2 and DF (�) haveeigenvalues �; � = e�2�i� with � 2 (0; 12 ). Generi
ally F is a perturbed twistmap with rings of alternating ellipti
 and hyperboli
 points arranged in a self-similar fashion. These families of periodi
 points are separated by invariant\KAM 
urves," whi
h form a set of positive Lebesgue measure; see [8℄.There is mu
h to be said 
on
erning the knotting and linking of orbits in
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ationsthe suspension of su
h a map, or, more generally, for any Hamiltonian 
ow on a
onstant-energy three-manifold (see, e.g.[116, 15℄). In parti
ular, sin
e the area-preserving H�enon map provides a spe
i�
 example of su
h a map, we shouldexpe
t to see some vestige of this behaviour in the horseshoe.We showed in x4.2.2 that, around the \primary" ellipti
 point, 
orrespondingto the (female) orbit x2, the natural suspension of the area-preserving H�enonmap has a (p; q) torus knot pair for ea
h p < q=2. In fa
t, mu
h more is true:the self-similar stru
ture suggested in the KAM Theorem 
orresponds, in thesuspended 
ow, to iterated torus knots of in�nitely many (but not all) types.The simplest of these are the 2-
ables 
reated in period doubling sequen
es, asexpressed in the following simple 
orollary to Lemma 4.3.5:Corollary 4.3.10 All female horseshoe knots are 2-
abled by some other horse-shoe knot.Proof: Let (a)1 denote the itinerary of the female horseshoe knot. Then, theperiodi
 orbit 
orresponding to the kneading invariant �(a) � x1x2 is a 2-
ableof (a)1 by Lemma 4.3.5 and Proposition 4.1.2. 2Remark 4.3.11 Sin
e any periodi
 orbit with kneading invariant of the formw � x1x2 is female, and those orbits 
reated in the period doubling sequen
ebased on the (female) orbit (a)1 with kneading invariant w have invariants w �x1x2; w�x1x2�x1x2; : : : , any �nite part of every period doubling sequen
e formsan iterated 2-
able of (a)1. Formulae des
ribing 
rossing and linking numbersof su
h stru
tures may be derived. For example, see [88℄ for a presentation ofthe period-doubling 
as
ade results of Yorke and Alligood [198, 199℄ in knot-theoreti
 terms.We now move to more general iterated torus knots. To pro
eed, re
all the no-tion of type numbers following De�nition 1.1.10. We 
all an iterated (horseshoe)torus knot of type f(p1; qi)g (with pi < qi; 8i) resonant if its type numbers qi
oin
ide with the periods qi of the kneading invariantswi in its de�ning sequen
eW .Theorem 4.3.12 (Holmes [88℄) Among the iterated horseshoe knots, ea
h �nitesequen
e f(pi; qi)gn1 of positive integers with pi; qi relatively prime and pi=qi < 12determines a unique pair of resonant iterated torus knots of type f(bi; qi)gn1 whereb1 = p1 and bi+1 = qi+1qibi + (�1)ipi+1: (4.10)This result is essentially an iterated version of Theorem 4.2.9. It is proved byidentifying the appropriate iterated horseshoe knots via their words and fa
toredkneading invariants, and pla
ing them 
orre
tly on the subtemplates of Theorem4.3.8. The words are �-multiplied analogues of those for the simple torus knotsof Theorem 4.2.9, and uniqueness follows by alternately maximizing and mini-mizing 
rossing numbers and appealing to Theorems 2.2.4 and 4.2.8. (Here, the
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ations 129embedded subtemplates are suÆ
iently twisted for one to apply Theorem 4.2.8dire
tly; no elaborate surgery as in Figure 4.6 is required.) The argument islengthy and not parti
ularly illuminating; for details and data on the asso
iatedkneading invariants and linking numbers see [88℄.We 
lose with a summary of orbit genealogies for the natural suspension ofthe horseshoe map. Generi
ally, orbits appear as male-female pairs in saddle-node bifur
ations, or as single female knots in period-doubling bifur
ations. Thefemale knots are \mothers," ea
h of whi
h forms the 
ore of a subtemplate hav-ing the asso
iated \father" knot as a boundary 
omponent. The mother isa 
ompanion (in the sense of De�nition 1.1.10) to her in�nitely many \
hil-dren:" generalized 
ables whi
h live on her subtemplate. Approximately halfof these knots are female, and as su
h, pro
eed to form sub-subtemplates sup-porting in�nitely many grand
hildren, et
. Sin
e ea
h subtemplate is a twistedand (perhaps) knotted 
opy of the original, the bifur
ation sequen
es on ea
hsubtemplate are miniature 
opies of the original but yield knots in
reasing in
omplexity. Not only are the individual orbits knotted and linked, but the sub-templates 
ontaining 
ertain lineages of orbits are also twisted and linked aboutone another.4.4 Homo
lini
 bifur
ationsWe now turn to some knot and link stru
tures asso
iated with global bifur
ationsinvolving homo
lini
 orbits to hyperboli
 saddle points in three dimensional
ows: _x = f(x): (4.11)Suppose the saddle point lies at x = 0 (f(x) = 0) and let �i denote the eigen-values of the linearization Df(0). There are many possible 
ases to 
onsider,for real and/or 
omplex eigenvalues, and expanding or 
ontra
ting 
ows, and weshall only give a brief sample of results. We start with the real, 
ontra
ting 
ase,summarising some results from [91℄, whi
h the reader should 
onsult for furtherdetail.4.4.1 Gluing and torus knotsSuppose that Df(0) has three real eigenvalues with the single expanding eigen-value �u > 0 weaker in magnitude than the two 
ontra
ting eigenvalues: ��ss >��s > �u > 0. We assume that both bran
hes of the one-dimensional unstablemanifoldW u(0) lie in the two-dimensional stable manifoldW s(0) and denote by� the set W u(0)[ f0g. This is a 
odmension two bifur
ation, generi
ally o

ur-ring at isolated points in parameter spa
e for a two-parameter family of ve
tor�elds f(x;�1; �2) (i.e., no symmetries are present). Letting (�1; �2) = (0; 0) besu
h a point and varying (�1; �2), the degenerate 
ase unfolds to the gluing bifur-
ation, in whi
h up to two periodi
 orbits bifur
ate from the double homo
lini
loop � [63, 72℄.
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ationsBefore stating the prin
ipal result, we must develop a little ma
hinery. De-note the two loops of �: x1 and x2. The bifur
ating periodi
 orbits may followx1 and/or x2 many times before 
losing, giving a natural des
ription as a word,mu
h as in the symboli
 des
ription of templates. Those words whi
h a
tuallyo

ur determine the unfolding. [63, 72℄ prove that any periodi
 orbit bifur
atingfrom � must have a rotation 
ompatible word.De�nition 4.4.1 An in�nite (�nite) word in two symbols is rotation 
ompatibleif it 
an be represented as the (�nite periodi
) itinerary of an orbit of a rigidrotation map �� : z 7! (z + �), z 2 S1, with the Markov partition I(x1) =(0; 1� �℄, I(x2) = (1� �; 1℄ for some � 2 [0; 1). The unique � for su
h a word isits rotation number .Remark 4.4.2 To 
ompute the rotation number of a given �nite rotation 
om-patible word, take the number of x2's and divide by the total length of theword: e.g., x21x2x1x2 ) � = 25 . The rotation 
ompatible words are pre
isely the\evenly distributed" words of Theorem 4.2.9. Finally, we re
all that two rationalnumbers pq and p0q0 are Farey neighbors if j pq0 � qp0 j= 1.Theorem 4.4.3 (Coullet et al. [63, 72℄) For every suÆ
iently C1-small pertur-bation of f(x; 0; 0) there are at most two periodi
 orbits in a small neighborhoodN of �. Any su
h periodi
 orbits are attra
ting and have rotation 
ompatiblewords, and, if there are two, their rotation numbers are Farey neighbors.The proof uses the eigenvalue 
ondition, whi
h implies that a small neighbor-hood of � is positively invariant and so 
ontains an attra
tor, even after (small)perturbation. De�ning 
ross se
tions near 0, one shows that the resulting returnmap is a (dis
ontinuous) 
ontra
tion. This, together with the fa
t that the at-tra
tor lies within the 
losure of the one-dimensional unstable manifold W u(0),of whi
h there are two bran
hes, implies that there are at most two stable pe-riodi
 orbits for any given parameter pair (�1; �2). The admissible words are
onstru
ted via a redu
ed (one-dimensional) return map, whi
h is e�e
tively adis
ontinuous mapping of the 
ir
le. Note that there may be two, one, or noperiodi
 orbits: both bran
hes of the unstable manifold may limit on an \irra-tional" 
urve whi
h winds repeatedly about, never 
losing.Thus, unlike the expanding Lorenz 
ow, whi
h is also related to a doublehomo
lini
 
onne
tion, gluing bifur
ations 
reate isolated periodi
 orbits 
har-a
teristi
 of Morse-Smale 
ows (
f. Appendix A). The interest here is in de-s
ribing how the rotation 
ompatible periodi
 orbits su

eed one another as theparameters (�1; �2) vary, and whi
h knots and links they form. To determinethe latter we will 
onstru
t \templates" for the 
ows, relaxing the expansivenessdemanded by the de�nitions of x2.2 to in
lude 
ontra
ting 
ows.There are two distin
t topologi
al 
on�gurations, depending upon whi
h sidesof W s(0) the homo
lini
 orbits reenter: these are the �gure-of-eight and thebutter
y, shown in Figure 4.12. For both systems, we assume the existen
e
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ations 131of a strong stable foliation (reported in [72℄ to be a generi
 
ondition in these
ases) and 
ollapse out as in the proof of Lemma 2.2.7, leaving a (
ontra
ting)template. Alternatively, these bran
hed manifolds may be viewed as embeddedsuspensions of one-dimensional noninvertiable return maps.

(a) (b)Figure 4.12: (a) The �gure-of-eight and butter
y 
on�gurations, and (b) asso-
iated templates.Embedding these templates in R3, we must in
orporate the \twist" of the
ow around the homo
lini
 
onne
tions, whi
h leads to twisting of the templatestrips. Temporarily ignoring full (even) twisting of ea
h strip and ex
ludingnon-trivially knotted embeddings, there are three intrinsi
 
ases to 
onsider:untwisted : �1 = �2 = 0; singly-twisted : �1 = 0; �2 = 1; and doubly-twisted :�1 = �2 = 1, also illustrated in Figure 4.12. Below we give results only for thebutter
y 
ase: the �gure-of-eight, whose template is unbran
hed, is somewhatsimpler. For details see [91℄.Case (1) untwisted: �1 = 0; �2 = 0Using the theory of 
ir
le maps (one views the Poin
ar�e map as a monotoneinje
tive map of the 
ir
le with a single dis
ontinuity), in [72, 65℄, it is provedthat this system has at most one periodi
 orbit. As an addendum to this, wehave:
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ationsProposition 4.4.4 Any periodi
 orbit appearing in the unfolding of an un-twisted butter
y is a torus knot. If the rotation number of the word is � = pq+p ,then the 
orresponding knot type is (p; q).Proof: Note that, although the dynami
s of the 
ontra
ting butter
y systemdi�er greatly from that of the expanding Lorenz 
ow, the asso
iated templatesare isotopi
, and their labeling by x1; x2 
onsistent. We shall extra
t a subset
ontaining the given rotation 
ompatible word from the Lorenz template L(0; 0)and show that it embeds in a torus. This, together with Theorem 4.4.3, provesthe 
laim, and also proves the last statement in Theorem 2.3.3.Pi
k a word with p x1's and q x2's and assume that p > q (If q > p, 
ipL(0; 0) about the verti
al axis and pro
eed by symmetry). Then, sin
e the wordis evenly distributed, there are no 
onse
utive x2's and ea
h trip about the x2-strip is immediately followed by a trip about the x1-strip. The orbit in questiontherefore lies on an unbran
hed subset S � L(0; 0) that may be isotoped as in-di
ated in Figure 4.13, from whi
h it is 
lear that it winds p times longitudinallyand q times meridionally around a torus T 2. (For this 
ase �1 = 0, but note forlater use that one 
an make the same isotopy moves, simply 
arrying the �1 halftwists along, sin
e the split does not extend that far.) 2

p� q qp p� qq
Figure 4.13: The subset S � L(0; 0) �ts on a torus T 2. The labels refer to thenumber of strands on ea
h strip.Example 4.4.5 The words x21x2x1x2 and x1x22x1x32 
orrespond to (2; 3) and(5; 7) torus knots respe
tively. Note that the mapping from words to torusknots di�ers from that on the horseshoe template H = L(0; 1), des
ribed in theproof of Theorem 4.2.9.
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ations 133Observe that this result merely proves that if an orbit with the given wordexists, then it is a torus knot of the type spe
i�ed. To �nd su
h orbits, one hasto tune the parameters (�1; �2) appropriately, as spe
i�ed in the bifur
ation di-agrams of [72, 65℄ and summarised in [91℄. Between ea
h pair of (disjoint) opensets (�1; �2) giving rise to torus knots of Farey neighbor types (p; q), (p0; q0) ,there is a set having knots of type (p+p0; q+q0): the Farey mediant. In this way,passing a
ross the parameter plane, one exhausts all torus knots. Intuitively, weare moving the thin in
oming strips along the bran
h line of the 
ontra
tingtemplate to mat
h up, one by one, the \ends" of the torus knots whi
h all 
o-exist on the expanding Lorenz template L(0; 0).We brie
y 
onsider the impa
t of introdu
ing �1 (even) positive half-twistsalong the x1 bran
h. The proof of Proposition 4.4.4 may be modi�ed to 
opewith this 
ase, as already indi
ated. Even if �1 is non-zero we may perform thesame moves without interferen
e from the additional half-twists. Then, sin
e �1is even and there are 12�1 full twists, we obtain a (p; q + 12p�1) torus knot (to
he
k this, refer to the positive braid genus formula of Equation (1.4)). A similarargument for �1 = 0 and �2 even yields a (p+ 12q�2; q) torus knot.If both �1 and �2 are simultaneously non-zero and even, the resulting subsetS 
an still be presented as a positive braid on p strands, but it is no longera torus knot, for there is additional twisting on the strip 
arrying q strands.Indeed, it does not appear to belong to any well-known knot family. A pi
tureand genus formulae for this 
ase appear in [91℄.Case (2) singly- and doubly-twisted: �1 = 0; 1; �2 = 1In these 
ases one 
an use 
ontra
tion and orientation-reversal properties ofthe one-dimensional return map indu
ed by the semi
ow, along with templatesurgery analogous to that of Figure 4.13, to prove the following rather restri
tiveresult:Proposition 4.4.6 ([91℄) If the x2-bran
h of the butter
y template has a half-twist (
ase (2)) then all periodi
 orbits appearing on it must have words x1 orxk1x2 (k � 0). The same holds reversing x1 and x2. If both bran
hes have halftwists (
ase (3)), then only x1, x2, and x1x2 may appear. Any periodi
 orbitappearing in the unfolding of either 
ase is an unknot.Remark 4.4.7 The signi�
an
e in the knotting and linking of orbits impli
atedin gluing bifur
ations lies not so mu
h in extra
ting bifur
ation invariants (forthese bifur
ations are fairly well-understood), but in displaying the general prin-
iple that simple dynami
s are 
oupled with the existen
e of simple knots andlinks. The fa
t that only torus knots 
an o

ur in a butter
y-gluing bifur
ation(in whi
h the 
ows are all zero-entropy) is in stark 
ontrast to the analogouspositive entropy Lorenz 
ow, in whi
h an in�nite array of knot types 
oexist: 
f.Theorems 3.1.15 and A.1.13.The next example of global bifur
ations exhibits an opposite extreme of topo-logi
al 
omplexity.
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ations4.4.2 Silnikov 
onne
tions and universal templatesWe now return to the example presented in x2.3.3: a radi
ally di�erent type ofglobal bifur
ation, originally studied by Shil'nikov [160, 161℄ (
f. [179℄ and thetextbooks [76, 188, 189℄, whi
h also 
ontain these and related results). The ma-terial below is adapted from [71℄. Re
all the de�nition of a Shil'nikov 
onne
tion,De�nition 2.3.8, and the asso
iated Theorem 2.3.9: that a 
ountable 
olle
tion ofsuspended horseshoes lives in a tubular neighborhood of a Shil'nikov 
onne
tion.Sket
h of proof of Theorem 2.3.9: We 
onstru
t Poin
ar�e se
tions transver-sal to � near the �xed point p and linearize the 
ow near p and along � toobtain approximate return maps. The horseshoes are 
onstru
ted by 
owingpairs of boxes near p and then along �. The �xed point has a one-dimensionalunstable manifold W u(p) and a two-dimensional stable manifold W s(p), alongwhi
h � =W s(p)\W u(p) spirals into p. (Although we 
onsider only the 
ase inwhi
h W u(p) is one-dimensional, our results apply equally well to W u(p) two-dimensional andW s(p) one-dimensional, sin
e this amounts to a reversal of timewhi
h leaves periodi
 orbits invariant.)

��0
�1

W s(p)
�1

�0 �+0

Figure 4.14: Cross se
tions and maps near the �xed point p.We 
onstru
t Poin
ar�e se
tions �0 and �1 transverse to � and suÆ
iently
lose to p that linear analysis provides a good estimate of the return map. Thesurfa
e �0 is bise
ted by W s(p) into upper (�+0 ) and lower (��0 ) halves. We usea 
ylindri
al 
oordinate system having origin at p and with �0 at 
onstant r and�1 at 
onstant z = �� 1 (this is the 
onvention of [76℄ | one may just as well



4.4. homo
lini
 bifur
ations 135
hoose �0 at 
onstant � [74, 189℄): see Figure 4.14. The return map fa
tors intothe \lo
al" map �0 : �+0 ! �1, whi
h is 
on
entrated near p, and the \global"map �1 : �1 ! �0, whi
h follows orbits along near �. Hypotheses (1) and (2)permit us to 
onstru
t approximations to these maps.Taking �0 and �1 
lose enough to p, the 
ow linearised at p,r(t) = r0e��st�(t) = �0 + !t (4.12)z(t) = z0e�ut;provides a good approximation of �0. Solving z(T ) = � for T , we obtain thetransit time for orbits leaving �0 to rea
h �1:T (z) = 1�u log �z : (4.13)This yields an expression for the lo
al return map �0:�0 : (r0; �; z) 7! �r0 � �z��s=�u ; � + !�u log� �z� ; �� : (4.14)Restri
ting to a suÆ
iently small neighborhood of � \ �1, one 
an assumethat the global return map �1 is aÆne. This yields an analyti
al approximationto the Poin
ar�e map given by 
omposition of (4.14) with an aÆne map. Su
h
omposed maps have been analyzed repeatedly [160, 161, 74, 66℄.The a
tion of �0 on a segment of 
onstant � is to stret
h it and wrap it around� \�1 in a logarithmi
 spiral. Sin
e z = 0 is on W s(p), the image of �0(r; z) asz ! 0 approa
hes � \�1. This image is then mapped aÆnely ba
k to �0, with�1(� \�1) = � \ �0: see Figure 4.14.One now examines the a
tion of �1�0 on re
tangular strips:Bi = f(�; z) � �+0 : ai � z � big; (4.15)where the sequen
es faig and fbig satisfy ai < bi < ai�1 and limi!1 ai = 0. Forappropriate 
hoi
e of numbers fai; big, it 
an be shown [76, 188, 189℄ that theimage of ea
h adja
ent pair fBi [Bi+1g under �1�0 interse
ts Bi [Bi+1 to forma hyperboli
 horseshoe (see e.g. Theorem 4.8.4 of [189℄): see Figure 2.11(b).These pairs are the horseshoes of Theorem 2.3.9. 2We now develop a geometri
 treatment based on the analysis sket
hed above(
f. [5℄), whi
h will allow us to extra
t the desired templates and prove that the
ow in a neighborhood of a double Shil'nikov 
onne
tion 
ontains representativesof all knots and links.Single Shil'nikov templatesThe horseshoes of Theorem 2.3.9 are hyperboli
, so we may 
ollapse along thestable foliations and, 
arefully following the embedding, 
onstru
t the embedded
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ationstemplate. We pro
eed in two steps, a

ording to the two 
omponents of thereturn map �1�0.First, the a
tion of the global map �1 is aÆne and takes the image under�0 of the \horizontal" Bi � �+0 to a \verti
al" strip in �0. Collapsing in the
ontra
ting dire
tion of the map �0�1, ea
h box Bi � �+0 be
omes a verti
alinterval fai � z � big at a �xed r. Thus, the 
ollapsed Bi and Bi+1 boxes aredisjoint within �+0 . Their images, however, are verti
al lines whi
h 
over �0;hen
e, the two strips are joined at a bran
h line.Sin
e �1 is aÆne, there is no additional folding. Therefore, instead of 
ol-lapsing the stable dire
tion out to obtain a bran
h line in �+0 , we 
an propagatethe bran
h line ba
k via ��11 to depi
t the joining of these strips within �1, asin Figure 2.12(b). The impa
t of �1 on the topology of the suspension is en-
oded in the twist of � between �1 and �+0 (
f. Remark 1.2.18). For N a smalltubular neighborhood of � ex
luding a small neighborhood of p, W s(p) \ N isa two-dimensional strip whi
h may twist any number of times about �. Sin
e�1�0(Bi) transversally interse
ts W s(p), the template inherits this same twist:see again Figure 2.12(b).The a
tion of the lo
al map, �0, is to stret
h Bi out along what was thez-dire
tion in �+0 and 
ompress Bi along what was the �-dire
tion. The imageof �0(�+1 ) is a thin spiral (imagine thi
kening that in Figure 4.14). The image ofany 
onse
utive pair Bi; Bi+1 lies within a folded strip: a horseshoe. As the boxBi � �+1 
ows through a neighborhood of p to rea
h �1, it is wrapped around� an integer number of half-turns, Bi+1 being wrapped with one more half-turnthan Bi. Indeed, the winding whi
h o

urs near p is revealed by Eqn. (4.14).As detailed in [188, 189℄, the boxes Bi 
an be 
hosen su
h thatai = �e��i�u=!: (4.16)Hen
e, �� � !(T (ai+1)� T (ai)) (4.17)= !�u �log �ai+1 � log �ai� = �;and the a
tion of the 
ow of Bi+1 from �+0 to �1 is to wind about � in the �dire
tion by an additional �, 
ompared to Bi. This is shown in Figure 4.15.Remark 4.4.8 The strips drawn in Fig. 4.15 are shown with minimal twisting;however, there is no guarantee that the \topmost" Bi, whi
h su�er the leasttwist, satisfy the hyperboli
ity 
onditions ne
essary for Theorem 2.3.9. We onlyknow that for i (and hen
e, twist) suÆ
iently large, pairs of boxes Bi[Bi+1 
anbe 
hosen so that their images form hyperboli
 horseshoes.We may now 
lassify the types of horseshoe templates whi
h appear near�. For i some �xed integer, 
onsider the template formed by 
ollapsing the
ontra
ting dire
tions of the 
ow of the boxes Bi and Bi+1. In a neighborhoodof p, the strip 
orresponding to Bi (resp. Bi+1) winds about � with i (resp.
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Figure 4.15: A \simple" Shil'nikov horseshoe.i+1) half-twists. The strips join at �1 in a single strip whi
h follows � ba
k to�0, undergoing a further M half-twists, for some �xed (but unknown) M .If we assume that the homo
lini
 
onne
tion is unknotted, the template thusobtained depends only on the depth of the horseshoe, i, and the �xed globaltwisting, M . Up to homeomorphism, there are two types, depending upon theparity of � � i+M . The template H� is shown in Figure 4.16: for � even, thisis homeomorphi
 (though not isotopi
!) to the standard horseshoe template H(
f. Figure 2.9), and for � odd, this is homeomorphi
 to the \twisted" horseshoetemplate ~H of Figure 4.10. For any �, H� is isotopi
 to H with � additionalhalf-twists inserted after the bran
h line.For a given 
ow, the global twisting M and the minimum depth i of itshorseshoes are e�e
tively un
omputable; hen
e, one 
annot rigorously 
on
ludethe existen
e of any parti
ular H� for a �xed system, only for � greater thansome (unknown) lower bound. We will now bypass this problem by 
onsideringa double 
onne
tion whi
h indu
es equal positive and negative twisting and
an
elling the two unknown twists.Double Shil'nikov templatesDe�nition 4.4.9 A fun
tion f : Rn ! Rn is equivariant with respe
t to afun
tion 	 : Rn ! Rn if 	f(x) = f(	(x)) for all x 2 Rn.We shall 
onsider Shil'nikov 
onne
tions in whi
h the ve
tor �eld of thedi�erential equation _x = f(x) is equivariant under a symmetry of one of the
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�

Figure 4.16: The single loop Shil'nikov horseshoe template H�.following forms: 	 : (x; y; z) 7! (�x;�y;�z)	 : (x; y; z) 7! (�x;�y; z) : (4.18)Su
h symmetries are quite 
ommon: the Lorenz system exhibits the se
ond type[114, 76℄. If the system additionally has a �xed point, p, satisfying the 
ondi-tions of Theorem 2.3.9, the 
ow will appear as one of the three 
ases shown inFigure 4.17, displaying either a pair of homo
lini
 spirals at p = 	(p), or a spiralhetero
lini
 
y
le 
onne
ting p and 	(p) 6= p. Naturally, an analogue to Theo-rem 2.3.9 holds in this 
ase, with the added ingredient of \
oupled horseshoes"[75, 86, 16℄.We now extend the arguments given above for the single loop 
ase to thedouble loop homo
lini
 orbit of Figure 4.17 [left℄, having the �rst symmetryof equation (4.18), so that the loop � has a partner �0 = 	(�). (The otherhetero
lini
 
ases 
an be dealt with similarly: see [71℄ for details.) As in thesingle loop 
ase of Figure 4.14, we de�ne Poin
ar�e se
tions �0 and �1, but nowalong with their images under 	: �00 and �01. Note that �1 is above the saddleand �01 below, and �0 and �00 on opposite sides. Using the same linear andaÆne approximations as before, we derive two lo
al and two global return maps�0 and � 00 and �1 and � 01, but in this 
ase we de�ne strips Bi � �0 and B0i � �00,so that �0(Bi) � �0, � 00(B0i) � �00, �1(�1) � �00 and � 01(�01) � �0. Thus werestri
t our attention to orbits whi
h make double traverses of a neighborhoodof � [ �0, tra
king the two loops in regular su

ession.Following the 
onstru
tion for the single loop 
ase, we produ
e the templateof Figure 4.18, in whi
h the strip leaving the upper bran
h line in �1 
onne
ts to�00, and that leaving the lower bran
h line in �01 
onne
ts to �0. The resulting
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Figure 4.17: Three symmetri
 homo
lini
 
on�gurations.template has two bran
h lines and 
ontains a 
opy of the single loop templateH� of Figure 4.16 followed by its image under 	. Sin
e 	 reverses orientation(det(D	 = �1)), the sense of twist in these two 
omponents is opposite; indeed,whatever the depth i, we may 
olle
t all the \extra" twisting of the upper 
om-ponent as a group of � = i +M positive half twists and that of the lower as� negative half twists. These twists may 
learly be 
an
elled exa
tly, leaving apair of \simple" horseshoe templates, one positive and one negative, as shownin Figure 4.18. We 
all the resulting template Z .Remark 4.4.10 We assume that the homo
lini
/hetero
lini
 
onne
tions in-volved in the double Shil'nikov 
onne
tion are unknotted. Otherwise, the tem-plate Z might be nontrivially knotted, obstru
ting our �nal step below.ODEs whi
h generate all knots and linksThe template Z , whi
h appears near the double Shil'nikov loop, shares theri
henss of the templates of x3.2:Lemma 4.4.11 The template Z is universal: it 
ontains an isotopi
 
opy ofevery knot and link.Proof: The symboli
 in
ation I given byI : V ,! Z 8>><>>: x1 7! x2x4x2 7! x1x3 7! x4x2x4 7! x3 ; (4.19)de�nes a map from V into Z . The astute reader will note that the images ofthe periodi
 orbits (x1)1 and (x3)1 2 V map to (x2x4)1 = (x4x2)1 in Z : the
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Figure 4.18: The double loop Shil'nikov horseshoe template Z , before (left) andafter (right) 
an
elling the opposite twists.same orbit. While this pre
ludes Equation (4.19) from satisfying the de�nitionof an in
ation (the image is not a proper subtemplate), we may neverthelessdisregard this anomaly by performing a DA-splitting of Z along (x2x4)1 andpro
eeding as usual. The orbit (x2x4)1 is an unknot and there are many moreunknots in the template. Figure 4.19 shows that the subtemplate de�ned by Iis isotopi
 to V . 2As a 
orollary, we obtain the following remarkable:Theorem 4.4.12 SuÆ
ient 
onditions for a third-order ODE to 
ontain peri-odi
 orbits representing all knot and link types are that the ve
tor �eld is suÆ-
iently C1-
lose to a ve
tor �eld satisfying the following four 
onditions:1. There exists a �xed point p for the ve
tor �eld, and the linearization Df jpat p has eigenvalues f��s � !i; �ug, with�u > �s > 0 ! 6= 0: (4.20)2. The 
ow �t is equivariant under one of the following symmetries:	 : (x; y; z) 7! (�x;�y;�z)	 : (x; y; z) 7! (�x;�y; z) : (4.21)3. There exists an orbit �(t) with limt!�1 �(t) = p and limt!1 �(t) = 	(p).
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Figure 4.19: V is a subtemplate of Z .4. The homo
lini
/hetero
lini
 loop(s) is(are) unknotted.The 
onstru
tions pre
eeding the proof of Theorem 4.4.12 above a
tuallyshow that, as one approa
hes the degenerate double loop, one 
an pi
k su

es-sively smaller tubular neighborhoods of the double loop whi
h 
ontain in�nitelymany 
opies of representatives of every knot and link equivalen
e 
lass.Thanks to the work of Chua et al. [38℄, we 
an even display an expli
itexample of a three-dimensional system whi
h 
ontains a universal template:Corollary 4.4.13 There exists an open set of parameters � 2 [6:5; 10:5℄ forwhi
h the set of periodi
 solutions to the di�erential equation_x = 7[y � �(x)℄;_y = x� y + z;
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ations_z = ��y; (4.22)�(x) = 27x� 314 [jx+ 1j � jx� 1j℄ ;
ontains representatives from every knot and link equivalen
e 
lass.Proof: In [38℄, it is shown that equation (4.22) satis�es the requirements ofTheorem 2.3.9 for the parameter � in the range indi
ated. (While this systemis pie
ewise linear, the 
onstru
tion of the hyperboli
 set avoids points at whi
hthe derivatives are not de�ned, mu
h as the 
lassi
al 
onstru
tion of Smale'shorseshoe in Example 1.2.28 ex
ludes orbits whi
h enter the preimage of thebend, where the map is strongly nonlinear.) Moreover, the homo
lini
 
onne
-tions are both unknotted. A symmetry 	 of the �rst type (4.18) 
learly holds forEquation (4.22), so that the template Z is embedded in the 
ow. Lemma 4.4.11then yields the 
on
lusion. 2Remark 4.4.14 For parameter values of � suÆ
iently small, the 
ow given byEquation (4.22) has periodi
 orbit set 
onsisting of two (symmetri
) unknottedseparable attra
tors. Hen
e, in
reasing the parameter � gives a bifur
ation se-quen
e whi
h builds all knots and links from these two \seeds." In 
ontrast tothe H�enon maps of x4.2.2, very little is known about the ordering of bifur
ationsand knot types in this sequen
e.Having given examples in this 
hapter of knot and link stru
tures whi
h arisein spe
i�
 
ows and the templates asso
iated with them, we now return to moregeneral questions regarding templates themselves, viewed in isolation from their
onne
tions to di�erential equations.



Chapter 5: InvariantsRe
all the fundamental problem in knot theory: when are two knots (links)equivalent? An analogous problem presents itself: when are two templates equiv-alent? We must �rst, however, 
arefully state what equivalen
e we want, sin
ewe are 
hie
y interested in the knots and links that inhabit a template, as op-posed to the bran
hed manifold itself. With this is mind, we pro
eed with asuitable de�nition of equivalen
e.Re
all that many orbits in a template's semi
ow exit the template. Periodi
orbits of 
ourse remain on the template forever, but so do asymptoti
ally periodi
and 
ertain other orbits. Those points whose forward traje
tories never exit thetemplate 
omprise the 
hain-re
urrent set of the template (
f. De�nition 1.2.11and the orbits whi
h never leave the Smale horseshoe map.)De�nition 5.0.1 Two embedded templates in S3 are equivalent if they are
onne
ted by a �nite sequen
e of the following template \moves:"1. Ambient isotopy on the template;2. The split move; and3. The slide move.The split and slide moves are illustrated in Figure 5.1.Remark 5.0.2 The reader might feel the slide move is just an isotopy. But,when the bran
h lines momentarily 
oin
ide, the obje
t obtained is not te
hni-
ally a template a

ording to De�nition 2.2.1.Remark 5.0.3 All three of the above moves indu
e an isotopy on the 
hain-re
urrent set of a template.The standard invariants of topology (e.g., the fundamental group) are alteredby the split move. Hen
e, we must sear
h for other means to 
onstru
t invari-ants of templates. We give two brief examples of template invariants whi
h aretopologi
al in nature.Perhaps the simplest invariant is orientability. By orientation we mean a
oordinate system that 
an be translated about by the 
ow. The horseshoetemplate H 
ontains a smooth M�obius strip of 
ow lines, and hen
e is nonori-entable as a template. The Lorenz template is orientable in this sense. No �nitesequen
e of template moves 
an take an orientable template to a nonorientabletemplate. 143
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Figure 5.1: Template moves: slide (above) and split (below)The link of 
losed orbits in the boundary of a template (perhaps empty)is not 
hanged by either template move and is thus an invariant. Even theframing of the boundary link is invariant: the twisting of the unit tangent bundlerestri
ted to the boundary link is un
hanged by template moves. Other loops inthe boundary of a template 
an be used to produ
e invariants. Consider loopswith one 
usp (see Figure 5.2). The split move 
an only 
reate or destroy loopswith two 
usps. However, we need to be 
areful in how we 
ount loops withone 
usp; we 
an use the 
usp only on
e. Otherwise the split 
ould a�e
t the
ounting of one 
usp loops. In fa
t for every n 6= 2 the number of boundaryloops with n 
usps is an invariant. Of 
ourse, all this requires that the 
hartsbe atta
hed smoothly and that the exit sets of the split 
harts be smooth. This
an always be done. We re
ord these observations below.Lemma 5.0.4 Given T � S3 an embedded template, the set of 
losed orbitswhi
h lie within the boundary of T , 
onsidered as a framed link, is an invariantof T . Furthermore, if we 
onsider �T as a smooth graph, then loops whi
h do
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tly two 
usp points are invariant.
split move

Figure 5.2: Counting boundary loopsExample 5.0.5 The Lorenz template has two unknotted unlinked orbits in itsboundary. The horseshoe template has one 
losed orbit and one loop with asingle 
usp; these loops are also unknotted and unlinked.Corollary 5.0.6 A 
omplete template invariant yields a 
omplete knot invari-ant.Proof: Given any knot K, let TK denote the embedded template obtained fromthe horseshoe template by re-embedding the x1 strip so that the orbit x11 hasknot type K with zero twist. Then, sin
e the boundary link of T is pre
isely theknot K, the ability to distinguish any two su
h templates implies the ability todistinguish the boundary knots. 2In the next se
tion, we begin with an invariant derived solely from dynami
aldata (i.e., the embedding of the template is not 
onsidered). In x5.2, we extendthis invariant to one whi
h a

ounts for orientations of the strips in a template.Then, in x5.3, we turn to the �-fun
tion of a 
ow as a means of 
ounting twistsof embedded orbits, thereby 
onstru
ting a dynami
al invariant sensitive to em-bedding. In x5.4 we dis
uss another type of �-fun
tion that en
odes linkinginformation in Lorenz templates.5.1 Classifying suspended subshiftsThe underlying dynami
s on a template are the suspended subshifts of �nitetype, as dis
ussed in x2.2. Two suspensions of subshifts of �nite type are topo-logi
ally equivalent if there is a homeomorphism between them that takes orbitsto orbits and preserves the 
ow dire
tion. Our goal in this se
tion is to des
ribe
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lassi�
ation theorem for suspensions of subshifts of �nite type with respe
t to
ow equivalen
e. Any invariant of suspensions of subshifts of �nite type is au-tomati
ally an invariant for templates. Su
h invariants are abstra
t in the sensethat they are insensitive to the embedding of the template in 3-spa
e. Of 
oursethe knot types of the orbits 
hange under di�erent embeddings. Invariants whi
hare sensitive to the embedding will be des
ribed in x5.3 and x5.4.In De�nition 1.2.20 we asso
iated to every subshift of �nite type a transitionmatrix A with entries all zeros and ones. This restri
tion is unne
essary andin this 
hapter we will merely require transition matri
es to be nonnegativeintegral square matri
es. In the vertex graph des
ription of Remark 1.2.22, thisis equivalent to allowing multiple edges between verti
es (
f. [53, Chapter 3℄).De�nition 5.1.1 A nonnegative n�n matrix A is irredu
ible if for ea
h integerpair (i; j) with 1 � i; j � n, there is a integer p � 1 su
h that the (i; j) entry inAp is nonzero. For subshifts of �nite type this means that we 
an get from anygiven Markov partition element to any other (or the same) partition element byiterating the shift map �.Irredu
ible transition matri
es 
orrespond to subshifts of �nite type with a denseorbit (
f. Corollary 3.1.17); that is, there is a single basi
 set.De�nition 5.1.2 Two nonnegative square integer matri
es, A and B are strongshift equivalent A s� B, if there exist nonnegative square integer matri
es A =A1; : : : ; Ak+1 = B and nonnegative integer (not ne
essarily square) matri
esR1; S1; : : : ; Rk; Sk su
h that Ai = RiSi and Ai+1 = SiRi for i = 1; : : : ; k.This \move" 
orresponds to making 
ertain 
hanges in the 
hoi
e of theMarkov partition. Roughly speaking we 
an relabel partition elements, re�nethem (i.e., 
hoose smaller disks) or 
ombine them (i.e., 
hoose bigger disks).The next theorem asserts that this suÆ
es to generate 
onjuga
y.Theorem 5.1.3 (Williams [191℄) Suppose A and B are nonnegative squareinteger matri
es and �A and �B are the 
orresponding subshifts of �nite type.Then �A is topologi
ally 
onjugate to �B if and only if A is strong shift equivalentto B.A 
on
ise proof of Theorem 5.1.3 
an be found in [53, Appendix A℄.Remark 5.1.4 Any nonnegative square integer matrix is strong shift equivalentto a square matrix whose entries are just zeros and ones.Example 5.1.5 Let A = � 1 11 0 �, and B = 24 1 1 00 0 11 1 0 35.Then using R = � 1 1 00 0 1 �, and S = 24 1 00 11 0 35 ; we get A = RS andB = SR. In this example the sequen
e length, sometimes 
alled the lag, wasjust one | su
h lu
k is rare.
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ise 5.1.6 Show that [2℄ s� � 1 11 1 �.Exer
ise 5.1.7 Prove that any relabeling of the elements of a Markov partition
an be realized by strong shift equivalen
e.Two irredu
ible nonnegative square integral matri
es are 
ow equivalent ifthe suspensions of the 
orresponding subshifts of �nite type are topologi
allyequivalent. The suspension of a subshift of �nite type 
orresponding to a per-mutation matrix is a �nite 
olle
tion of 
losed orbits. Irredu
ible permutationmatri
es are thus said to form the trivial 
ow equivalen
e 
lass. In order to 
har-a
terize the 
ow equivalen
e 
lasses of irredu
ible nonnegative square matri
eswe need an additional \move" know as expansion equivalen
e. The idea is thatwe 
an 
hange a Markov partition by adding a new partition element \parallel"to an 
urrent one. That is the new partition element is a forward (or ba
kwards)translation via the 
ow of a 
urrent partition element.De�nition 5.1.8 Two square matri
es A and B are expansion equivalent, A e�B, if A = 264 a11 � � � a1n... ...an1 � � � ann 375 and B = 2666664 0 a11 � � � a1n1 0 � � � 00 a21 � � � a2n... ... ...0 an1 � � � ann
3777775 ;or vi
e versa.Here A e� B represents expansion along the �rst partition element. But, sin
erenumbering the partition elements 
an be realized by strong shift equivalen
e,this is the only expansion we need 
onsider.Parry and D. Sullivan showed that these two moves | strong shift equiva-len
e and expansion equivalen
e | generate 
ow equivalen
e [141℄.Theorem 5.1.9 (Parry and Sullivan [141℄) Two nonnegative square integer ma-tri
es A and B are 
ow equivalent if and only if there exist a �nite sequen
eof square nonnegative matri
es A = A0; A1; : : : ; Ar = B with Ai s� Ai+1 orAi e� Ai+1 for i = 0; :::; r � 1.As a 
orollary, we obtain our �rst dynami
al invariant.Corollary 5.1.10 If A and B are 
ow equivalent then det(I�A) = det(I�B).Proof: The proof is an exer
ise, though beware of sign errors. 2Bowen and Franks [27℄ developed another invariant of suspensions of subshiftsof �nite type, working at least initially from a di�erent point of view. Using ann� n transition matrix A they 
onsider the groupGI�A = Zn=(I �A)Zn:
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ow equivalent thenGI�A �= GI�B .Outline of proof: Let A be an n � n integer matrix. Consider the a
tion ofA on the n-torus Tn. The �xed points of A form a subgroup of Tn under ve
toraddition (mod 1). The �xed point subgroup is also given by the kernel of themap (I�A) : Tn ! Tn. By a standard duality theorem the kernel is isomorphi
to the 
o-kernel of the map (I �A) : Zn ! Zn, whi
h is just GI�A.Under strong shift equivalen
e the �xed point set of A is un
hanged. For theexpansion move one shows that it is equivalent to taking a dire
t sum with atrivial group and so does not e�e
t the isomorphism 
lass. 2We 
an now state the 
lassi�
ation theorem:Theorem 5.1.12 (Franks [55℄) Suppose that A and B are nonnegative irre-du
ible integer matri
es, neither of whi
h is in the trivial 
ow equivalen
e 
lass.The matri
es A and B are 
ow equivalent if and only ifdet(In �A) = det(Im �B)and Zn(In �A)Zn �= Zm(Im �B)Zm ;where n and m are the sizes of A and B respe
tively, In and Im are identitymatri
es, and �= denotes group isomorphism.Remark 5.1.13 Theorem 5.1.12 does not hold if the trivial 
ow equivalen
e
lass is not ex
luded.Theorem 5.1.12 does not have a very good resolution for distinguishing tem-plates. Consider the Lorenz and Horseshoe templates (L(0; 0) and H from x2.3).These ea
h have the matrix � 1 11 1 �as a transition matrix, yet surely they are not equivalent, sin
eH is not orientablewhile L(0; 0) is: no �nite sequen
e of template moves transforms an orientabletemplate into a nonorientable template.5.1.1 Finitely generated Abelian groupsIt is worth noting that although strong shift equivalen
e is not generally 
om-putable, the invariants of suspensions of subshifts of �nite type are readily 
om-puted. To see this we digress brie
y into the theory of Abelian groups. Anysquare integer matrix A yields an Abelian groupGA = Zn=AZn;
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es 
an give rise to isomorphi
groups. If matrix B 
an be obtained form matrix A by a �nite sequen
e ofoperations (to be listed shortly) then GA �= GB . The matri
es A and B donot need to be the same size. Furthermore, ea
h isomorphism 
lass of matri
eshas a 
anoni
al representative whi
h 
an be 
omputed from any other matrixin its 
lass by a �nite algorithm; thus, the 
onverse holds as well. The allowedoperations are:� swit
hing two rows,� multiplying a row by �1,� adding an integer multiple of one row to another,� the analogous 
olumn operations, and� deleting a row and 
olumn whose only nonzero entries are a shared 1 onthe diagonal (or the reverse of this move).The 
anoni
al form is a diagonal matrix with diagonal entries d1; : : : ; dk withdijdi+1 for i = 1; : : : ; k � 1 and di 6= 1 for i = 1; : : : ; k. It then follows thatGA �= Zd1 � � � � �Zdk ;where Z0 = Z.These fa
ts are 
olle
tively know as the Fundamental Theorem of FinitelyGenerated Abelian Groups. We do not present the formal algorithm for produ
-ing the 
anoni
al form, but the reader should be able to get the hang of it byworking a few examples.Finally, we note that the order of GA is given by j detAj if detA 6= 0 and isin�nite if detA = 0. Thus, Theorem 5.1.12 
ould be restated using the groupGI�A and just the sign of det(I �A).Exer
ise 5.1.14 Let A = � 1 22 1 �. Show that GA �= Z3.5.2 Orientation data and stronger invariantsOur strategy for developing more sensitive abstra
t template invariants is tomodify the transition matrix to in
lude orientation information. Given a Markovpartition fx1; x2; : : : ; xNg of a template we assign an orientation to ea
h partitionelement. Then the �rst return map restri
ted to ea
h partition element is eitherorientation preserving or orientation reversing.De�nition 5.2.1 A parity matrix for a template is 
onstru
ted from a transitionmatrix by multiplying aij by the variable t if the �rst return map is orientationreversing from the i-th partition element to the j-th partition element.
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ontrast, the paritymatrix for the horseshoe template H is � 1 1t t �.In [170℄ the following theorem is proved:Theorem 5.2.3 Let T1 and T2 be two abstra
t templates with parity matri
esA1(t) and A2(t), respe
tively. If T1 and T2 are related to ea
h other by a �nitesequen
e of template moves thendet(I �A1(t)) = det(I �A2(t)) mod t2 = 1:De�nition 5.2.4 Given a parity matrix A(t), the linear fun
tion det(I �A(t))mod t2 = 1 is the full Parry-Sullivan invariant.The full Parry-Sullivan invariants distinguish the Lorenz template (�1) fromthe horseshoe template (�t).The group GI�A(1) is invariant as before, and it is not hard to show thatGI�A(�1) is also invariant. It is quite tempting to 
onje
ture that the full Parry-Sullivan invariant, along with these two Abelian groups, would give a 
ompleteset of invariants for abstra
t templates. But the template in Figure 5.3 gives a
ounterexample. Its full Parry-Sullivan invariant is �1 and both GI�A(1) andGI�A(�1) are trivial, as they are for the Lorenz template. Yet, this template isnot orientable and thus 
learly inequivalent to the Lorenz template.De�nition 5.2.5 The unit normal bundle of the orbit set of a template is theribbon set of the template. For an embedded template, this set is realized as thebundle of lo
al stable manifolds.We 
an reformulate Theorem 5.2.3 in terms of ribbon sets. Let T1 and T2 betemplates with ribbon sets R1 and R2 respe
tively. Then if there is a homeo-morphism between R1 and R2 taking ribbons to ribbons (in parti
ular annuli goto annuli, M�obius bands go to to M�obius bands and in�nite strips go to in�nitestrips) and preserving the 
ow dire
tion, then det(I � A1(t)) = det(I � A2(t))mod t2 = 1 and GI�A1(�1) �= GI�A2(�1), where A1(t) and A2(t) are parity ma-tri
es for T1 and T2 respe
tively. Furthermore, the de�nition of a ribbon set 
anbe extended to basi
 sets of 
ows on higher dimensional manifolds and the ana-logue of these results remain valid [170℄. It also follows from [170℄ that templateswith homeomorphi
 ribbon sets (in the manner just des
ribed) 
an be related,up to embedding, by a �nite sequen
e of template moves.De�nition 5.2.6 Two twist matri
es are 
ow equivalent if they are asso
iatedwith equivalent ribbon sets. The generators of 
ow equivalen
e for parity ma-tri
es are the analogs of s� and e� for parity matri
es, and a new move, the twist
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Figure 5.3: A nonorientable template whose full Parry-Sullivan invariant is thesame as that of the (orientable) Lorenz template.move: A(t) t� B(t) if B(t) = 26664 a11 ta12 � � � ta1nta21 a22 � � � a2n... ... ...tan1 a2n � � � ann 37775 ;where A(t) = [aij ℄.In applying t�, we multiply the �rst row and 
olumn of A(t) by t and take t2 = 1.On the level of templates, the twist move 
orresponds to rotating the bands thatpass through the �rst Markov partition element by a half twist. Thus, amongthese bands, those whi
h formerly had an odd number of half-twists now havean even number and vi
e versa. Sin
e this 
an be realized by isotopy there is noneed to de�ne a new 
orresponding template move.Example 5.2.7 Let A(t) = 24 0 0 11 1 0t t t 35, and B(t) = 24 0 1 t1 0 00 1 t 35 :We 
laimA(t) and B(t) are 
ow equivalent. Set R = � 1 1 00 0 1 � ; and S = 24 0 11 0t t 35 :Now A(t) = SR and RS = � 1 1t t � : Applying the twist move followed by anexpansion yields B(t).
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ise 5.2.8 Constru
t a sequen
e of templates and template moves thatrealize Exmaple 5.2.7.Remark 5.2.9 The orbit splitting pro
edure used in 
onstru
ting templates forhigh dimensional basi
 sets alters the interse
tion of an orbit with elements ofa Markov partition. Thus, the Parry-Sullivan invariants would su�er 
hanges.However, there is in the theory of Markov partitions a me
hanism that 
orre
tsfor multiply-
ounted orbits that o

ur if the partition elements overlap. Thisinvolves 
onstru
ting a \
orre
tion matrix" whi
h is just a transition matix forthe overlap set. It is typi
ally a permutation matrix. For 
ows, a similar matrix
ould be introdu
ed to 
orre
t for the orbits 
hanged by orbit splitting. Itseems likely that su
h a devi
e 
ould be used to 
onstru
t invariants under orbitsplitting, but this has not yet been 
arried out.Remark 5.2.10 The full Parry-Sullivan invariant is an invariant of one-dimensionalbasi
 sets in manifolds of any dimension.5.2.1 Additional ExamplesExample 5.2.11 Figure 5.4 shows two templates ea
h of whi
h has full Parry-Sullivan invariant �t. The one on the left has two 
losed orbits in its boundarywhile the one on the right has just one su
h loop; hen
e, they are distin
t.Figure 5.5 shows that the rightmost template is equivalent to the horseshoetemplate (re
all that we are disregarding the embedding).

Figure 5.4: Two templates with invariant �t.Example 5.2.12 Consider a template with n strips 
oming down from a singlebran
h line, ea
h looping ba
k to the bran
h line and stret
hing 
ompletelya
ross it (while this is not te
hni
ally a template it is easily turned into one byn � 2 small pushes near the bran
h line: 
f. the slide move). Suppose that kof the strips are untwisted (orientation preserving) and l = n � k are twisted
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split

isotopy
homeomorphism

Figure 5.5: A template homeomorphi
 to the horseshoe template after a splitmove.(orientation reversing). Then the full Parry-Sullivan invariant is 1� k � lt, andso templates with di�ering k are distinguished.Exer
ise 5.2.13 Show that the Bowen-Franks groups of Theorem 5.1.11 do notfurther re�ne the distin
tions between the templates in Example 5.2.12Example 5.2.14 Figure 5.6 shows two templates with three strips, only one ofwhi
h is twisted in ea
h. They are distinguished by the fa
t that the numberof 
losed orbits in their respe
tive boundaries di�er. In Figure 5.7 we showtwo templates with �ve strips, only one of whi
h is twisted in ea
h. A studyof the boundary loops, in
luding those with 
usps, fails to distinguish them.We 
onje
ture however, that they are distin
t and spe
ulate that some type of\non-abelian" invariant is needed to distinguish them.
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Figure 5.6: Two templates with three strips (identify top and bottom).
Figure 5.7: Two templates with �ve strips (identify top and bottom).5.3 Zeta fun
tions and 
owsWe now turn to invariants that are sensitive to the embedding of the template.At this stage, knot theory reenters the pi
ture. The idea is again to modify thetransition matrix, but this time to produ
e a twist matrix. We shall then use azeta fun
tion to 
ount orbits a

ording to the amount of twist in their unit normalbundles. That is, we regard twist as a 
anoni
al (though nondynami
al) periodfor a 
losed orbit in a 
ow. The weakness of this approa
h is that invarian
eholds only over positive templates.5.3.1 Review of Zeta Fun
tionsFor general referen
es on zeta fun
tions see [53, Chapter 5℄ or [162, Chapter 10℄.De�nition 5.3.1 The zeta fun
tion of a map f : M �! M is the exponentialof a formal power series in t,�f (t) = exp 1Xm=1 1mNmtm! ;where Nm is the 
ardinality of the �xed point set of fm, the m-th iterate of f .
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hain-re
urrent set then the Nm are all �nite and �f (t)is a rational fun
tion; hen
e, a �nite set of numbers determine all the Nm. Inparti
ular, if Ol denotes the number of periodi
 orbits of length l thenNm =Xljm lOl:We 
an re
over Ol by the M�obius inversion formula [165, page 765℄:Ol = 1l Xmjl �(m)Nl=m;where � is the fun
tion de�ned by�(m) =8<: 1 if m = 1;0 if 9 a prime p with p2jm;(�1)r if m = p1; : : : ; pr, for r distin
t primes.When a map f has a zero-dimensional hyperboli
 
hain-re
urrent set, asis the 
ase for subshifts of �nite type, then there exists a square matrix A ofnonnegative integers su
h that Nm = tr (Am). Then �f (t) = 1= det(I � tA).The matrix A is of 
ourse the transition matrix for a Markov partition.The diÆ
ulty in applying zeta fun
tion theory to topologi
al 
ows is thatthere is no 
lear notion of the period of a periodi
 orbit. Temporal lengths, whi
hare not generally integral, 
hange under reparametrization. On a template, we
an use the �rst return map of a Markov partition to give a (symboli
) periodto 
losed orbits. The zeta fun
tion is invariant under the three template moves.However, it is not 
lear that su
h an approa
h would give useful informationabout the original 
ow. Instead we use the twist in the lo
al stable manifolds of
losed orbits as a 
anoni
al period.Remark 5.3.2 Heuristi
ally, one may view the Parry-Sullivan invariants as theevaluation of a zeta fun
tion at �1. However, zeta fun
tions typi
ally fail to 
on-verge at these values, and the zeta fun
tion is not invariant under the expansionmove.5.3.2 Positive RibbonsA 
losed ribbon, or ribbon for short, is an embedded annulus or M�obius band inS3. In this se
tion we de�ne three notions of twist for ribbons. These are, theusual twist �u [98, xV℄, the modi�ed twist �m, and the 
omputed twist �
.Like knots and templates, ribbons 
an be braided. A ribbon whi
h has abraid presentation su
h that ea
h 
rossing of one strand over another is positiveand ea
h twist in ea
h strand is positive, will be 
alled a positive ribbon. The
ore and boundary of a positive ribbon are positive braids.We will use the following notation. If R is a ribbon and b(R) is a braidpresentation of R, let 
 be the sum of the 
rossing numbers of the 
ore of R,
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rossings and �1 for negative 
rossings, as per Figure 1.2.Let t be the sum of the half twists in the strands of b(R) and let n be the numberof strands of the 
ore.De�nition 5.3.3 Let �u = 
+ t=2, �m = n� 1 + t=2 and �
 = 2n+ t:Lemma 5.3.4 �u is an isotopy invariant of ribbons over all braid presentations.�m and �
 are isotopy invariants of positive ribbons over positive braid presen-tations.Proof: For an embedded annulus the linking number of the two boundary
omponents is 
 + t=2. The same formula gives one half the linking number ofan embedded M�obius band's boundary with its 
ore. In both 
ases we �nd that�u is an invariant.The invarian
e of �m for positive ribbons follows from 
he
king that�m = �u � 2g;where g = 12 (
 � n + 1) is the genus of the 
ore of R. Here we have appealedTheorem 1.1.18 for the formula for g. Finally we see that �
 = 2(�m + 1): 2For the trefoil orbit in Figure 5.8 the reader 
an 
he
k that g = 1 and thatits unit normal bundle has �u = 6, �m = 4 and �
 = 10.
Figure 5.8: Lorenz template with trefoil orbit.Visually, the 
onversion of a positive full twist to a loop or writhe de
reasest by 2 but 
reates an extra strand. Sin
e doing this to a negative full twistwould in
rease t by 2 while 
reating an extra strand, it is easy to show that theinvarian
e of �m and �
 fail for ribbons with mixed 
rossings. We also note that�u = �m is equivalent to g = 0, whi
h in turn is true if and only if the 
ore ofthe ribbon is unknotted.Lemma 5.3.5 For positive templates the number of 
losed orbits with a given
omputed twist is �nite.Proof: Given a positive template we put it into a positive braid form and
onstru
t a Markov partition with K partition elements. Given �
 
hoose n so
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 < 2n. Be
ause the template is braided, a 
losed orbit that meets anyone partition element n times must have wrapped around the braid axis at leastn times. Sin
e there are no negative half twists, su
h an orbit's 
omputed twistis bigger than or equal to 2n. If w � Kn, then any 
losed orbit with symboli
period w must have traveled around the template's braid axis at least n times.Thus, any 
losed orbit with 
omputed twist �
 has word length less than Kn.There 
an only be �nitely many su
h orbits. 2The 
omputations in the proof of Lemma 5.3.4 show that Lemma 5.3.5 holdsfor �m and �u as well as �
. This is 
lear for �m. For �u, use the fa
t g � 0implies �u � �m.5.3.3 Counting Twisted RibbonsDe�nition 5.3.6 For a given positive template let Tq0 be the number of 
losedorbits with 
omputed twist q0. Let Tq =Pq0jq q0Tq0 . De�ne the zeta fun
tion ofthe template to be the exponential of a formal power series:�(t) = exp 1Xq=2 Tq tqq ! :Theorem 5.3.7 The zeta fun
tion � is an invariant of ambient isotopy of theribbon set for positive templates. It terms of positive templates � is invariantunder isotopy and the two templates moves shown in Figure 5.1.Proof: This follows dire
tly from Lemma 5.3.4. 2We now de�ne a twist matrix, A(t), whose entries are nonnegative powers oft and 0's, by 
onsidering the 
ontribution to �
 as an orbit goes from one elementof a Markov partition to other. Let Aij = 0 if there is no bran
h going fromthe i-th to the j-th partition element. Let Aij = tqij if there is su
h a bran
h,where qij is the amount of 
omputed twist an orbit pi
ks up as it travels fromthe i-th to the j-th partition element. It is easy to see that one 
an, if ne
essary,isotope the template so that qij is always integral. This might be ne
essary ifsome of the partition elements lie outside of the bran
h lines. Also note that one
an always 
hoose the partition so that at most one bran
h goes from the i-thelement to the j-th element for ea
h i and j. However, if one wishes to be moregeneral, one 
an use polynomials in A(t) instead of just powers of t.For example, the template and partition in Figure 5.9 giveA(t) = 266664 0 0 0 t t0 0 0 1 10 t2 t2 0 0t2 t2 t2 0 0t3 t3 t3 0 0 377775 :
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x1 x2 x3

x5x4
Figure 5.9: A template with a Markov partition indi
ated by thi
k lines.Theorem 5.3.8 For any template and any allowed 
hoi
e of A(t) we have�(t) = 1= det(I �A(t)). Thus, the zeta fun
tion is rational.The proof of Theorem 5.3.8 is a standard 
ounting argument and 
an befound in [171℄. We present an example to 
all attention to the major ideas.Re
all the horseshoe template H from Figure 2.9. Using the standard two-element Markov partition fx1; x2g, we haveA(t) = � t2 t2t3 t3 � ;and so, 1= det(I �A(t)) = 1=(1� t2 � t3):We apply a standard matrix identity (see Lemma 5.2 of [53℄ or Proposition10.7 of [162℄) to get 1det(I �A(t)) = exp 1Xn=1 tr A(t)nn ! : (5.1)
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tors 159�m 0 12 1 32 2 52 3 72 4 92 5 112L 2 0 1 0 2 0 3 0 6 0 9 0H 1 1 0 1 0 1 1 1 1 1 1 2A 3 0 2 0 5 0 10 0 24 0 50 0Table 5.1: Number of orbits listed by �m for di�erent templates.Let us analyze the �rst three terms of1Xn=1 tr A(t)nn = t2 + t31 + t4 + 2t5 + t62 + t6 + 3t7 + 3t8 + t93 + � � �There are �ve 
losed orbits whi
h pass through the Markov set three or fewertimes: x1, x2, x1x2, x21x2, and x1x22. All are unknotted, so �m = �u. The t2 andthe t3 of the �rst term of the sum 
orrespond to the orbits x1 and x2 respe
tively.In the se
ond term, x1 and x2 are 
ounted again, by t4 and t6 respe
tively, sin
ethey have been traversed twi
e. The 2t5 
orresponds to x1x2, where the 2 is theprodu
t of number of orbits that pass through the Markov set twi
e (just 1 inthis 
ase) with 2, the number of passes.The reader should 
he
k that 3t7 
orresponds to x21x2 and 3t8 to x1x22. Thet6 and the t9 again 
ount x1 and x2 respe
tively, this time making three tripson ea
h. It is worth noting that tr (A(1))n is the number of interse
tion pointsof the Markov set with the link of 
losed orbits whi
h meet the Markov set n0times, where n0 divides n.As a �nal example, Table 5.1 displays the number of 
losed orbits havingspe
i�ed (low) amounts of twist for three di�erent positive templates: the Lorenztemplate, L, the horseshoe template H, and a template denoted A, shown inFigure 5.10. The template A was �rst studied in [169℄, where it was shown to
ontain only prime knots.Exer
ise 5.3.9 Write a 
omputer program to generate table entries similar toTable 5.1 where the user enters the twist matrix.Remark 5.3.10 Using zeta fun
tions to 
ount twists is a strategy whi
h 
annotbe adapted to all templates. Re
all the templates U and V from Chapter 3; sin
ethere exist isotopi
 template renormalizations on these templates, ea
h 
ontainsin�nitely many distin
t 
opies of a knot with a given twist.5.4 A zeta fun
tion for Lorenz attra
torsBran
hed 2-manifolds with semi
ows were �rst introdu
ed to study the strangeattra
tors believed to be asso
iated with the Lorenz equation (Equation (2.1))[193℄, [194℄. Sin
e the hyperboli
ity of the Lorenz equations in the parameter
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Figure 5.10: The template A.range of interest was and still is unknown, geometri
ally de�ned 
ows were usedas a model. The attra
tors of the model 
ows 
ould then be studied rigorouslyvia templates. See [166, Appendix G℄ for a ni
e overview.However, these \early" templates di�er in two respe
ts from the Lorenz tem-plate L(0; 0) de�ned in Chapter 2, and indeed, from all of the templates dis
ussedso far. First, orbits in the boundary 
an enter the interior of the template |that is, the boundary 
ow is not invariant. In parti
ular, the 
losed orbits x11and x12 are not realized. Se
ondly, the template in
ludes a saddle point, O.This 
auses the invariant set of the template to be two dimensional. Figure 5.11shows this obje
t, whi
h we shall 
all a sublorenz template 
an be used to modela geometri
 Lorenz attra
tor. Although this is not a subtemplate of the Lorenztemplate L(0; 0), all of the 
losed orbits on it are ambient isotopi
 to knots inthe Lorenz template. As before, we may use words in x1 and x2 to des
ribe or-bits; however, sin
e we will work only with templates having two elements in theMarkov partition, we will relabel x1; x2 as x and y respe
tively for the remainderof this se
tion. Note in addition that the line we use for a 
ross se
tion of thesemi
ow extends beyond the bran
h set. We shall 
all it the extended bran
hline.Consider the saddle point within the sublorenz template. On this template(and in the full three-dimensional 
ow whi
h generated it), the saddle point andthe attra
tor are inseparable but distin
t invariant sets. Thus, the Lorenz at-tra
tor is not 
losed: 
f. Theorem 1.2.13. Of spe
ial interest are the traje
toriesof the left and right bran
hes of W u(0). Denote these l and r respe
tively. Ifthey ea
h return to 0, thus forming a double saddle 
onne
tion, we 
an de�ne a
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Figure 5.11: A sublorenz template.�nite Markov partition for the semi
ow: see Figure 5.12. This naturally leads toa 
orresponding transition matrix A(x; y) whi
h measures not only whi
h parti-tion element sequen
es are admissible, but also along whi
h strip (x denoting leftand y denoting right) the transitions o

ur (see Example 5.4.4 below). Althoughthe double saddle 
onne
tion 
ase is not a generi
 
ase, it is the situation we
onsider.

Figure 5.12: A double saddle 
onne
tion.Two tools allow us to 
ompa
tly en
ode information on the transitions in asublorenz template.De�nition 5.4.1 The kneading sequen
e k of a sublorenz template is a pair ofsequen
es (kl;kr) de�ned as follows: kl is a sequen
e of x's and y's determinedby the order in whi
h l meets the extended bran
h line. If l returns to the saddlepoint then a terminal 0 is appended to kl. The sequen
e kr is de�ned similarly.De�nition 5.4.2 Let S denote a sublorenz template with �nite kneading se-quen
e and transition matirx A(x; y). Then the pre-zeta fun
tion of S is de�ned
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ation of matrix elements is non
ommutative. Theabelianization of � (what one obtains by de
laring xy = yx) is denoted �a.Suppose we are given two sublorenz templates, S and S 0. Let Ŝ and Ŝ 0denote their respe
tive inverse limits. When are Ŝ and Ŝ 0 homeomorphi
? Herethe homeomorphism need not preserve the 
ow. On the level of the templateswe only need invarian
e under reordering of the partition elements. In [194℄, twoanswers are given via the previous two de�nitions.Theorem 5.4.3 (Williams [194℄) Let L and L0 denote sublorenz templates with�nite kneading sequen
es. Then the following statements are equivalent:(a) L and L0 have homeomorphi
 inverse limits;(b) The 
orresponding kneading sequen
es are equal, k = k0; i.e., kr = k0l andkl = k0r; and(
) The 
orresponding pre-zeta fun
tions are equal, �(x; y) = �0(x; y), up toex
hanging x and y.Example 5.4.4 Consider again the sublorenz template in Figure 5.12, denotedS. The kneading sequen
e is (yy0; xx0). The Markov partition has the obviousfour elements, with in
iden
e matrix given byA(x; y) = 2664 0 x 0 00 0 x xy y 0 00 0 y 0 3775 :The overlap between the end points of the Markov partition elements does not
ause any over 
ounting problems sin
e the end points all 
ow towards thesaddle point 0 and so are not periodi
. The abelianized pre-zeta fun
tion is thendetermined byexp(��a(x; y)) = det(I �A) = 1� xy � xy2 � x2y � x2y2:That is, after abelianization the usual tools of zeta fun
tion theory 
an be ap-plied. But it is not 
lear how to de�ne a non-abelian zeta fun
tion using a matrixformula. One apparently has to grind out the tra
e of ea
h power of the matrixdire
tly. For the matrix A(x; y) the �rst three terms of � are01 + xy + yx2 + x2y + xyx+ xy2 + yx2 + yxy + y2x3 :
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tion for lorenz attra
tors 163As orbits xy and yx are the same, abelianization would not 
ause any loss ofinvariant information in the se
ond term. Likewise the elements of the third term
orre
tly 
apture the two period three orbits. This is be
ause abelianization and
y
li
 permutation are the same for these two terms. But, by the �fth term thisis no longer the 
ase. The reader 
an 
he
k that there are no orbits with the wordx3y2 on S, but the word x2yxy is realized by a trefoil orbit. This distin
tion islost in �a but not by �.In [196℄ Williams developed a new type of determinant that allows one towrite a matrix equation analogous to Equation (5.1). We give a heuristi
 outlineand an example.Given a Markov partition with n elements 
onsider the set of 
losed orbitswhi
h do not visit any partition element more than on
e. These orbits all have(symboli
) period less than or equal to n. For the template S they are xxy,xxyy, xy, xyy. Ea
h orbit 
orresponds to a 
y
li
 permutation 
lass in the freegroup on two symbols. Following [196℄ we 
all these 
lasses free knot symbols.For S the free knot symbols are just (xxy), (xxyy), (xy), and (xyy), where theparentheses denote the 
y
li
 permutation 
lass. We allow, for algebrai
 reasons,the empty symbol (). Next, we de�ne a free link symbol as a formal produ
tof free knot symbols whose 
orresponding knots have no partition elements in
ommon, where the empty symbol () is taken to be the unit. We will 
onsiderthe ring of free link symbols given by allowing formal addition of symbols withinteger 
oeÆ
ients. For the template S, ea
h free link symbol is the produ
t ofjust one free knot symbol.Given any square matrix A of x's, y's and 0's one 
an write down all the freelink symbols. To do this we �rst de�ne an index 
y
le. An index 
y
le is a �nitesequen
e, (i1; : : : ; ik) of k distin
t integers, 0 � k � n su
h that the produ
t ofmatrix elements Ai1;i2Ai2;i3 � � �Aik;i1 6= 0:Then (Ai1;i2 ; Ai2;i3 ; : : : ; Aik ;i1)is a free knot symbol for the in
iden
e matrix. The empty symbol is 
orrespondsto an empty index 
y
le: this is the multipli
ative identity in the ring. We maythen 
on
atenate free knot symbols so long as their 
orresponding index 
y
leshave no 
ommon elements. This yields the 
olle
tion of free link symbols for A,denoted fls(A).We make the following observations. The free knot symbols (xy) and (yx)are the same by 
y
li
 permutation. But (xxyyx) is di�erent from (xyxyx). Thisis as it should be to model knots on a template. However, the ring produ
t is
ommutative. Again this makes sense, sin
e there is no preferred order on thelink of periodi
 orbits. Thus in the de�nition below (w)(v) and (v)(w) representthe same element of the ring. Ring addition is also (of 
ourse) 
ommutative.The addition operation should thought of as \purely algebrai
", in that unlikethe ring produ
t it does not 
orrespond to a geometri
 operation on knots.
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hapter 5. invariantsDe�nition 5.4.5 The link-determinant is de�ned bylink-det (I �A) = Xfls(A)�iwi; (5.3)where wi = (w1) � � � (wl) 2 fls(A) and �i = (�1)l. For the template L weget 1�(xxy)�(xxyy)�(xy)�(xyy) as the link-det of the in
iden
e matrix. The(I � A) in the above de�nition may look a bit odd at �rst. It 
an be regardedas a notational formality for 
onsisten
y with the usual zeta fun
tion. However,allowing 1's in the matrix 
an be used to give a de�nition of free link symbols soas to have them all be of length n by \�lling" in with 1's. See [196℄ and [103℄.Exer
ise 5.4.6 Let A = 24 0 x 00 0 xy y 0 35 :Show that link-det (I �A) = 1� (xxy) � (xy).Theorem 5.4.7 (Williams [196℄) exp(��(x; y)) = link-det (I �A):The intuitive idea is thatmost of the non-abelian \badness" is \hidden" insidethe free knot symbols and so one 
an use standard matrix theory ma
hinery,suitably modi�ed. In parti
ular an analogue of the Cayley-Hamilton theoremholds [103℄. To see why we say most and not all of the non-abelian badnessis hidden, see Example D of [196℄. We name �W (x; y) = exp(��(x; y)), theWilliams zeta fun
tion.Theorem 5.4.7 
an be interpreted to mean that a small set of words, 
orre-sponding to links \�tted" to a Markov partition, determine all the other possibleperiodi
 words of the given Lorenz attra
tor. Sin
e the order of the words hasnot been washed out by abelianization, we 
an re
onstru
t the knots. This is nottoo surprising sin
e the kneading sequen
e 
an be viewed as two spe
ial knotsthat determine all the others. In fa
t, the words 
orresponding to the two knotsl [ O and r [ O, do appear in the link-det.Finally, we note that under abelianization link-det (I�A) be
omes det (I�A)and that if P is a permutation matrix link-det (I �A) = link-det (I �PAP�1).These fa
ts are both have easy proofs and are done in [196℄.Example 5.4.8 Figures 5.13 and 5.14 show two sublorenz templates, A andB. It is not hard to set up the 
orresponding matri
es A(x; y) and B(x; y) and
ompute thatdet(I �A) = x9y6 + x8y5 + x7y5 � x6y4 � x3y2 � x2y + 1 = det(I �B):However, A and B are not equivalent as 
an be seen by 
he
king their kneadingsequen
es. We leave it as an exer
ise to 
ompute their Williams zeta fun
tions.
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Figure 5.13: The sublorenz template A.

Figure 5.14: The sublorenz templates B.5.5 Remarks on other invariants and open prob-lemsRemark 5.5.1 A new 
lass of template invariants has re
ently been announ
ed[100℄. They are derived from em quantum groups, a 
lass of obje
ts whi
h ap-pears to be of fundamental importan
e in the study of knot and link invariants[158℄. These results are beyond the s
ope of the present text, but it is worthnoting that both the original Parry-Sullivan invariant and the full Parry-Sullivaninvariant have been realized as quantum invariants. However, the 
omputationsinvolved in developing more sensitive invariants with regard to embeddings ap-pear to be quite hard and still remain to be done.Remark 5.5.2 There has been a great deal of work in symboli
 dynami
s ofsubshifts of �nite type under various restri
tions (e. g. irredu
ibilty) and ingeneralized 
ontexts (e. g. �nite identi�
ations). See [32℄, for example. Our
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e �ts into this framework, although one would hope tosee the 
onne
tion made more expli
it. It is less 
lear if our boundary invariants(the link of 
losed orbits in the boundary, et
.) 
an be derived from purelysymboli
 data. If they 
an, then there is some 
ause for optimism toward theproblem of 
lassifying ribbon sets of templates (in 
ontrast with arbitrary ribbonsets, whi
h do not have boundary).Remark 5.5.3 The twist-zeta fun
tion for positive templates de�ned in x5.3was found before the full Parry-Sullivan invariant of x5.2. In fa
t, the latterarose from an attempt to over
ome the restri
tion of the twist-zeta fun
tionto positive templates. It would be useful to develop an easier way to 
omputetemplate invariants whi
h intermediate between these two; ideally it should bewell-de�ned for all templates but should 
ontain more embedding informationthan does the full Parry-Sullivan invariant.



Chapter 6: Con
luding RemarksIn this monograph we have des
ribed tools, developed largely in the past �f-teen years, whi
h permit the expli
it 
onstru
tion and des
ription of those knotand link types realised as periodi
 orbits in 
ertain 
lasses of three-dimensional
ows. The prin
ipal tool is the template, whi
h allows the redu
tion of a three-dimensional 
ow having a hyperboli
 invariant set to a semi
ow on a bran
hedtwo-manifold. We also develop a \template 
al
ulus:" a symboli
 language forthe 
hara
terization and manipulation of templates. These te
hniques are de-s
ribed in Chapter 2. They build on \
lassi
al" ideas from knot theory anddynami
al systems theory, whi
h we review in Chapter 1.In Chapter 3 we have used these tools to derive general results on templateknots, and to prove the existen
e of a universal template whi
h 
ontains (in-�nitely many) representatives of all tame knots and links. Here the tone is thatof in
lusion. Chapter 4 takes a more ex
lusive viewpoint; we fo
us on restri
ted
lasses of templates, espe
ially that 
orresponding to the \simplest" suspensionof Smale's horseshoe map. We show that in su
h 
ases only limited 
lasses ofknots 
an o

ur, and that uniqueness results may be used to distinguish bran
hesof periodi
 orbits in bifur
ation studies. The 
hapter ends with a return to in
lu-siveness, as we show that the universal template of Chapter 3 o

urs within the
ows of an open set of ODEs near a double Silnikov type homo
lini
 bifur
ationpoint.Chapter 5 takes a di�erent dire
tion in that we turn to the 
hara
terization oftemplates per se instead of the knots and links they support. Template invarianttheory is less well-developed than the 
orresponding theory for knots, and this
hapter is ne
essarily more tentative in nature and limited in s
ope than the restof the book.In the 
ourse of the text we have noted or hinted at a number of open ques-tions. In the hope that they may stimulate future work, we 
olle
t and expandon them here. We also give referen
es to some relevant (and mostly re
ent)literature of whi
h we learned shortly before the book went to press.Problems in template theory and appli
ationsProblem 6.0.1 The best sort of result one 
ould hope for in template theorywould be an easily-
omputed, dis
riminating template invariant. This appearsto be a very diÆ
ult undertaking, as mentioned in Chapter 5. However, as thenumber of new knot-and-link invariants seems to be growing daily, there is hopethat some of these re
ent invariants 
an be exported to template theory: e.g.,the quantum template invariants mentioned in x5.5.Problem 6.0.2 As an alternate approa
h to the previous problem, it would be167
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on
luding remarksvery useful (and indeed, it seems quite feasible) to develop a rough 
lassi�
a-tion theorem for templates. The 
rudest su
h result would provide ne
essaryand suÆ
ient 
onditions for determining when a template is universal. Naturalre�nements of this 
lassi�
ation would in
lude a 
ompa
t way to des
ribe howa template fails to be universal (e.g., the template is positive). Sin
e we haveshown that every template is universal up to embedding, this would entail somesort of des
ription of how the strips are embedded (e.g., they are all linked intoo-
ompli
ated a manner, or perhaps ea
h strip is knotted and for
es satelliteknots, et
.). We re
all Conje
ture 3.2.24, whi
h states that a template is uni-versal if it has a suÆ
iently large unlink within it | failure to be universal maybe en
oded in the size of the largest unlink. A related problem is to determinewhether or not a universal template (one whi
h 
ontains all knots) must be veryuniversal in the sense that it 
ontains V as a subtemplate (and hen
e, all links,in�nitely many 
opies of all links, et
.). However, this appears to be a rathermessy problem.Problem 6.0.3 There are several lesser problems 
on
erning universal tem-plates. For example, how are the knot types distributed in the spa
e of periodi
orbits? Are the unknots dense in this spa
e? Answers to su
h questions wouldgive an idea of the probability of �nding a parti
ular type of knot within theperiodi
 orbit set.Problem 6.0.4 In applying template theory to studying �bred knots (re
allx2.3.4) it is un
lear how mu
h information is en
oded in the template asso
iatedto the �bration. In all the examples 
omputed here (related to the �gure-eightknot and the Whitehead link), the derived templates are universal. It is reason-able to guess that every �bred link with pseudo-Anosov monodromy whi
h is nota positive braid has a universal template asso
iated to its �bration. However,if this is not true, then the templates would serve as a tool for distinguishing
ertain �bred links. Or, perhaps, �ner information than the planetary link as awhole 
ould be derived from the template.Problem 6.0.5 In applying template theory to templates derived from 
ows,we have restri
ted ourselves to uniformly hyperboli
 dynami
al systems, forwhi
h the Template Theorem applies. It would be of great interest to adaptthe proof to non-uniformly hyperboli
 
ases (
overed by Pesin theory), whi
hare known to be 
ru
ial for des
ribing the full dynami
s of smooth maps ofH�enon type and their attra
tors [131, 140℄.Problem 6.0.6 In a related vein, the material of Se
tion 5.4 also suggests a newdire
tion. Indeed, while the study of templates for hyperboli
 sets has maturedover the past �fteen years, there have been few appli
ation of templates toattra
tors per se. This is perhaps mainly be
ause it is very diÆ
ult to prove thatnon-trivial, inde
omposable attra
tors exist for 
ows de�ned by spe
i�
 ODEs,while hyperboli
 (sub-) sets are relatively easy to �nd. We note that Kennedyin his Ph. D. dissertation [102℄ shows that the Lorenz-like templates (Se
tion2.3.1) are realized as models for attra
tors in 
ertain geometri
ally de�ned 
ows,
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ertain 
lasses of ODEs
ontain geometri
 Lorenz attra
tors: see [44℄, [156℄, and [152℄. However, noother type of template has been rigorously asso
iated with the full attra
tor ofan ODE. The examples given in Se
tion 2.3.3, and the proof of Se
tion 4.4.2that a universal template lies in the 
ow near a double Silnikov homo
lini

onne
tion, all involve hyperboli
 sets whi
h may belong to an attra
ting set,but whi
h 
ertainly do not 
omprise the whole attra
ting set.A further 
ompli
ating fa
tor, mentioned brie
y in Se
tion 5.4, is the issueof invariant sets or attra
tors with in�nite (
ountable) Markov partitions, whi
hmay require kneading theory for a full des
ription, as does the (geometri
al)Lorenz attra
tor. Williams [194℄ gives a method for the 
onstru
tion of in�niteMarkov partitions for the sub-Lorenz templates of Chapter 5. J. Wagoner [185℄,[186℄, has also studied in�nite Markov partitions, but not in the 
ontext oftemplates. This area is also open.Problem 6.0.7 The largely non-rigorous ideas of Se
tion 2.3.5, in whi
h tem-plates are derived from embedded (experimental) time series, 
ontinue to attra
tinterest. Papers following up on [128℄ in
lude [126, 121℄ and [108, 159, 109, 111,110, 113, 112℄. The referen
e [126℄ is notable in that it shows expli
itly howdi�erent embeddings 
an give rise to templates 
arrying topologi
ally distintlinks of periodi
 orbits (although this is not surprising, in view of the fa
t thatall templates are universal, up to embedding (Theorem 3.3.5).) It would thusseem important to derive embedding-invariant des
riptions of templates, 
f. theParry-Sullivan invariants of Chapter 5.Problem 6.0.8 Perhaps the greatest short
oming of the te
hniques detailed inthis book (ex
ept for portions of Chapter 5) is their inherent three-dimensionality.Knotting and linking of periodi
 orbits is simply impossible in higher dimensions.In terms of trying to derive topologi
al information from time series data, [136℄and [127℄ are good �rst steps in deriving higher dimensional topologi
al stru
-tures from time series.Other avenues are also open. There is a well-de�ned notion of higher-dimensional knot theory in whi
h k-spheres are knotted and linked within (k+2)-spheres. Several authors have suggested applying su
h perspe
tives to dynami-
al problems [128, 130℄; however, there is a glaring la
k of dynami
ally relevantspheres ex
ept for 1-spheres (periodi
 orbits). What 
an (and should) be ex-plored is the presen
e of knotted k-tori in (k + 2)-dimensional 
ows. Su
h torimay be nontrivially knotted, thought not in the way that one might expe
t, givenone's intuition in R3. Here is an example: 
onsider a nontrivial knot K � R3.Then K � S1 � R3 � S1 is a nontrivially knotted torus in a 4-manifold. It is
lear to see how su
h knotted tori would arise naturally in several 
ontexts, in-
luding periodi
ally ex
itation of three dimensional ODEs possessing hyperboli
periodi
 orbits.In this 
ontext it remains to develop a good knot theory for embedded tori(almost all of the work in higher-dimensional knot theory has been done withspheres), and then to �nd key examples in whi
h embedding information 
an
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on
luding remarksbe easily derived. It appears unlikely that a higher-dimensional template theoryis possible; however, 
onsidering the embedding data in Hamiltonian systemsmight be a good pla
e to start.



Appendix A: Morse-Smale / SmaleFlowsA.1 Morse-Smale 
owsIn Morse-Smale 
ows the basi
 sets are simply 
losed orbits and �xed points:there is no \
haos" and hen
e little need for templates. Nevertheless, su
h
ows form an interesting and important 
lass. Here we review basi
 fa
ts aboutMorse-Smale 
ows, 
ulminating in the result of M. Wada [184℄ that 
hara
-terizes whi
h links 
an be realized as the periodi
 orbit link of a nonsingularMorse-Smale (NMS) 
ow on the 3-sphere. (Re
all that a nonsingular 
ow is a
ow without �xed points.) Surprisingly, a sub
lass of these links is pre
iselythe set of realizable links in a spe
ial 
lass of Hamiltonian systems [35℄ (seeRemark A.1.14).We re
all the de�nition of Morse-Smale 
ows from Chapter 1:De�nition A.1.1 A 
ow �t on a manifold M is Morse-Smale if,� The 
hain re
urrent set is hyperboli
,� The stable and unstable manifolds of basi
 sets meet transversely.� Ea
h basi
 set 
onsists of a single 
losed orbit or �xed point.For M a 
ompa
t manifold, it follows that there are a �nite number of periodi
orbits and �xed points.Among stru
turally stable 
ows, Morse-Smale 
ows have attra
ted spe
ialinterest. Morse-Smale 
ows are dense in the C1 topology of C1 
ows on 
ompa
t2-manifolds (this follows from Pugh's 
losing lemma [147℄). In the C1 
ase thedensity result is known only for orientable 
ompa
t 2-manifolds [142℄ and forthe proje
tive plane, the Klein bottle or the torus with a 
ross 
ap [78℄. Forother nonorientable 2-manifolds the question remains open. On any manifold,Morse-Smale 
ows form a dense subset among the gradient 
ows, regardless ofthe smoothness 
lass. An ex
ellent a

ount of these results 
an be found in [139℄and the referen
es there.Example A.1.2 We give a 
onstru
tion for a NMS 
ow on S3 with two 
losedorbits: one attra
tor and one repellor, whi
h form a Hopf link as illustrated inFigure 1.9(
). Consider the solid torus V1 = D2 � S1 as the subset of R2 (inpolar 
oordinates) 
rossed with S1 given byV1 = f(r; �; �); 0 � r � 1; �; � 2 S1g:171



172 appendix a. morse-smale / smale flowsPla
e a 
ow on V1 given by the ve
tor �eldX = ( _r; _�; _�) = (�r; 0; f(r));where f(r) is a smooth nonnegative bump fun
tion with support in a smallneighborhood of r = 0. Let V2 denote a se
ond 
opy of V1 out�tted with the\ba
kwards" ve
tor �eld �X . As su
h, we may mat
h the ve
tor �elds on theboundaries of V1 and V2 and glue these solid tori together via � : �V1 ! �V2given by (�; �) 7! (�; �).There are several ways to show that gluing V1 and V2 together in this manneryields S3, 
on
luding the existen
e of the desired NMS 
ow: we review one su
hpro
edure. Observe that gluing two disks together along their boundary in theobvious way produ
es a 2-sphere. Likewise gluing two 3-balls together yields a3-sphere. If we 
ut out a small neighborhood of a diameter in one of the 3-balls,the remaining portion of that 3-ball is a topologi
al solid torus. However, theunion of this neighborhood and the other 3-ball is also a solid torus. Thus, wehave realized S3 as a union of two solid tori (in this 
ase, V1 and V2) gluedtogether along their boundaries in a manner whi
h ex
hanges the meridian andlongitude as per �. The resulting NMS 
ow is pi
tured in Figure A.1.

Figure A.1: A NMS 
ow on S3 whi
h has one attra
tor and one repellor arrangedin a Hopf link.Not every manifold supports a nonsingular Morse-Smale 
ow, or even a non-singular 
ow for that matter. A simple Euler 
hara
teristi
 
riterion determines



a.1. morse-smale flows 173if a manifold supports a nonsingular 
ow, Morse-Smale or otherwise. This 
ri-terion is a mild extension of 
lassi
al results due to H. Hopf and Poin
ar�e [124℄:Lemma A.1.3 Let M be a 
ompa
t manifold whose boundary, possibly empty,has been partitioned into two 
olle
tions of 
onne
ted 
omponents, ��M and�+M : �M = ��M [ �+M;; = ��M \ �+M:Then there exists a nonsingular ve
tor �eld on M, pointing inward on ��Mand outward on �+M , if and only if �(��M) = �(M). 1Asimov [12℄ has shown that every manifold of dimension n 6= 3 whi
h satis�esthe Euler 
riterion above supports a nonsingular Morse-Smale 
ow. This is falsefor 3-manifolds, but Morgan [132℄ has 
hara
terized whi
h 3-manifolds supportnonsingular Morse-Smale 
ows. Morgan's 
riteria are rather te
hni
al and wewill not go into them here. See [132℄ or [35℄. The basi
 idea behind theseresults is that a manifold supports a nonsingular Morse-Smale 
ow if and onlyif it admits a round handle de
omposition. We give details only for the 
ase of3-manifolds.A.1.1 Round handlesIn dimension three, a round handle (RH) is a solid torus D2 �S1 together witha spe
i�ed subset of its boundary 
alled its atta
hing zone. We imagine thatea
h round handle 
omes with a NMS 
ow having the 
ore f0g� S1 as the sole
losed orbit, as in Example A.1.2. The exit set of the 
ow will be the atta
hingzone for the round handle (possibly empty, in the 
ase of attra
ting orbits). Wewill use round handles to build NMS 
ows by gluing them together so that theatta
hing zones are joined to the in-
owing regions of other round handles.� 0-RH: The atta
hing zone is the empty set and the 
ore is an attra
tingorbit. We start building a NMS 
ow by laying down some 0-RHs.� 1-RH (untwisted): The atta
hing zone 
onsists of two disjoint annuli, ea
hgoing longitudinally around the torus on
e, and the 
ore orbit is a saddleorbit whose lo
al stable and unstable manifolds are annuli (perhaps twistedwith a nonzero but even number of half twists).� 1-RH (twisted): The atta
hing zone is an annulus that wraps twi
e longi-tudinally about the torus, and the 
ore orbit is a saddle whose lo
al stableand unstable manifolds are M�obius bands.� 2-RH: The atta
hing zone is the entire boundary, and the 
ore orbit is arepellor.1Re
all �(;) = 0. For review of the Euler 
hara
teristi
, see [117℄.



174 appendix a. morse-smale / smale flowsRemark A.1.4 This de�nition 
an easily be extended to de�ne round handlesin higher dimensions: see [12℄.De�nition A.1.5 A RH de
omposition of S3 is a sequen
e of manifolds:; =M0 �M1 �M2 � � � � �Mk = S3su
h that ea
h Mj is obtained by atta
hing a RH to Mj�1 along its atta
hingzone.Lemma A.1.6 (Asimov [12℄ and Morgan [132℄) For every RH de
ompositionof S3 there is a NMS 
ow on S3 su
h that (1) the 
losed orbits of the 
oware equivalent to the 
ores of the round handles, together with their indi
es andtwistedness; and (2) the 
ow is inwardly transverse to �Mj for ea
h j.Conversely, for every NMS 
ow on S3 there is a RH de
omposition su
h that(1) and (2) above hold.Sket
h of Proof: It is 
lear from the remarks above that if we 
an �nd around handle de
omposition, then we 
an build a 
orresponding NMS. One doeshave to 
he
k that the stable and unstable manifolds interse
t transversely, butthis 
an always be a
hieved by a small perturbation.The other dire
tion is harder and will require the use of the no-
y
le propertyof Morse-Smale 
ows. Sin
e in a NMS 
ow, all the 
losed orbits are attra
tors,repellors, or saddles, their tubular neighborhoods are round handles. We wantto use the a
tion of the 
ow itself to do the atta
hing. But we need to order theorbits sequentially to get a de
omposition. In our 
ase, we would like to enumer-ate all the attra
ting orbits in arbitrary order, then the saddles, and �nally therepellors, again in any order; however, the saddles 
annot be atta
hed in arbi-trary fashion. Clearly, if the unstable manifold of one orbit 
ows into the stablemanifold of another, this latter orbit should appear �rst in the de
omposition.But should the unstable manifold of this orbit 
ow ba
k into the stable manifoldof the former, a de
omposition would not exist. It is the no-
y
le property whi
h
ir
umvents this problem.Let 
1; : : : ; 
n be the 
losed orbits of a NMS 
ow. De�ne 
i � 
j if theunstable manifold of 
j meets the stable manifold of 
i. The No-Cy
le Theorem[165℄ states that � is a partial ordering on the 
losed orbits. By 
hoosing anytotal ordering 
ompatible with �, we may use the a
tion of the 
ow to atta
htubular neighborhoods of the 
losed orbits and obtain a de
omposition.Suppose we have built up Mi�1, and want to atta
h the next round handle.(M0 is easy as it is just a 0-RH.) Let Ni denote the neighborhood of 
i and letEi denote the exit set of the 
ow. The forward image of Ei under the 
ow in-terse
ts �Mi�1. We form a bigger round handle by joining Ni with St�0 �t(Ei)and deleting any interse
tion with Mi�1. Taking the 
losure of this yields a RHfor 
i atta
hed toMi�1. A small adjustment must be applied to the boundary ofMi, whi
h is tangent to the 
ow along the \edges" of St�0 �t(E). In addition,one must also adjust slightly to make sure things are smooth. 2



a.1. morse-smale flows 175A.1.2 The 3-sphereIn this book, we have 
onsidered the knotting and linking properties of 
losedorbits for 
ows on the 3-sphere. In [184℄, M. Wada 
hara
terized the 
lass of linksthat 
ould be realized as the set of periodi
 orbits of a nonsingular Morse-Smale
ow on S3. A
tually he does a little more | ea
h 
omponent of a link of 
losedorbits may be labeled with the index of the orbit: 0 (for attra
tors), 1 (saddles)or 2 (repellors). Wada 
hara
terizes whi
h indexed links 
an be realized.The interested reader may �nd Wada's paper tersely written. In parti
ular,there are no illustrations, although the proof requires nontrivial visualization.2A more re
ent paper [35℄ (see Remark A.1.14) is easier to follow, but leaves outsome details, referring to Wada's paper. Thus, the diligent reader might wantto have both papers on hand to understand the proof. Here we present only astatement of the result and a brief outline of the proof. Before stating Wada'stheorem, we 
onstru
t two further examples of NMS 
ows on S3. Ea
h exampleshows how to build a new 
ow from one or more existing 
ows.Example A.1.7 Consider an attra
tor A of a NMS 
ow on S3. We may removea tubular neighborhood N of A and repla
e it with a solid torus supporting anNMS 
ow whi
h is inwardly transverse to the boudary, but whi
h 
ontains morethan a single 
losed orbit. Consider the return map on a meridional 
ross-se
tionofN : this will appear as a dis
 with a sink at the 
enter of the dis
, the remainderof whi
h is foliated by invariant radial lines along whi
h orbits tend towards thesink.In Figure A.2, we give three di�erent examples of new 
ows that 
an beglued in to S3 nN , illustrated by means of the 
ross-se
tional return maps. Notethat ea
h has three 
losed orbits (or �xed points in the map), and that oneis a saddle (as should be via simple index theory). Upon suspension of thesemaps, the two \side" orbits may 
able about the 
ore orbit an arbitrary numberof times. Finally, we may generate all sorts of variations on this example byperforming an n-fold bran
hed 
overing of the dis
, bran
hed over the 
enterpoint, as illustrated in Figure A.3 | hen
e, more general 
ablings of orbits 
anbe produ
ed. Of 
ourse, one may reverse the 
ow dire
tion and 
reate NMS 
owson solid tori with the attra
tors and repellors ex
hanged and the 
ow outwardon the boundary.We now possess several tools and 
omponents for building new NMS 
ows onS3 from old ones. We next 
onstru
t a NMS 
ow on S3 with basi
 sets 
onsistingof a single saddle orbit and two Hopf links, ea
h a repellor-attra
tor pair, puttogether via a \split sum:"De�nition A.1.8 (Split sum) Let L1 and L2 be links in two three-spheres S31and S32 respe
tively. Delete a small open 3-ball from ea
h of the link 
omple-ments, S3i � Li, i = 1; 2, and form the union of S31 � B1 and S32 �B2 by gluingthem along their boundaries. We obtain a new 3-sphere (to see this take one of2A preprint of Wada's paper did in
lude many helpful illustrations whi
h did not survivein the published version.
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Figure A.2: Return maps on a 
ross se
tion of an attra
ting orbit. Trianglesrefer to sinks, squares to sour
es, and 
rosses to saddles.
Figure A.3: Cablings more general than (2; n) may be 
reated by modifying oneof the above examples via a bran
hed 
overing.the balls to be a neighborhood of \1") with a new link denoted L1 Æ L2 and
alled the split sum of L1 and L2.Taking the split sum of two links results in a separable link.Example A.1.9 We will build up our 
ow in pie
es and then glue the pie
estogether to obtain a 
ow on S3. Let C denote a 
ylinder I � S1. We 
an put aNMS 
ow on the thi
k 
ylinder C � I having a single 
losed orbit of index one,i.e., a saddle: see Figure A.4. The exit set is �C � int (I). The 
ow entersfrom int (C)��I and is transverse along the exit and entran
e sets. The saddleorbit is the 
enter 
ir
le of C 
ross the midpoint of I .De�nition A.1.10 A simple 
losed 
urve embedded in a surfa
e is inessentialif it bounds a disk in the surfa
e. Otherwise, the 
urve is said to be essential.Now we 
ontinue with Example A.1.9. Let Vi, i = 1; 2 be two 0-roundhandles. Atta
h one 
omponent of �C � I to an inessential annulus on �V1, sothat the annulus' 
ore bounds a disk in �V1, and atta
h the other 
omponent toan inessential annulus on �V2. We 
an \round o� the 
orners" of this atta
hing
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Figure A.4: Thi
kened 
ylinder with a saddle orbit.so as to obtain a smooth 
ow on the union with the 
ow entering transverselyalong the entire boundary of the resulting manifold.However, if we atta
h V1; C � I; and V2 naively as in Figure A.5 there wouldbe a 2-sphere transverse to the 
ow in the boundary. Any attempt to use thisto build a 
ow on S3 would for
e a singularity. Thus the atta
hment to V2 mustbe done in a di�erent way. In Figure A.6, C � I \swallows" V2, and then turnsin to atta
h to it. Note that �C � f0g bounds a disk in V1 minus the atta
hingannulus but not on V2 minus the atta
hing annulus.
Figure A.5: The union of two solid tori and a thi
k 
ylinder may have a sphereand a double torus as boundary.To re
ap so far, the manifold V1 [ (C � I) [ V2 has a NMS 
ow with three
losed orbits: two attra
tors and a saddle. The 
ow is transverse inward alongthe entire boundary. What is that boundary? It is the disjoint union of two tori.



178 appendix a. morse-smale / smale flowsThe outer one, referring again to Figure A.6, 
ontains \1". We glue in two newsolid tori V3 and V4, ea
h endowed with NMS 
ows, exiting transversely alongtheir boundaries, and ea
h 
ontaining a single 
losed repelling orbit at its 
ore.In the language of round handles, we have built a 
ow with two 0-round handles,two 2-round handles, and a single 1-round handle.This last gluing produ
es the desired NMS 
ow on S3. If we denote a pair ofdistin
t Hopf links by hi, i = 1; 2 and the unknotted saddle by u, then the 
hainre
urrent set of our new NMS 
ow would be h1 Æ h2 Æ u. Wada generalizes this
onstru
tion for links other than Hopf links: see W1 in de�nition A.1.11 below.

Figure A.6: The same handles atta
hed di�erently 
ontain only tori as boundary
omponents.A.1.3 Wada's TheoremDe�nition A.1.11 Let W be the 
olle
tion of indexed links determined by thefollowing seven axioms:W0: The Hopf link indexed by 0 and 2 in is W .W1: If L1; L2 2 W then L1 ÆL2 Æu 2 W , where u (here and below) is an unknotin S3 indexed by 1.W2: If L1; L2 2 W and K2 is a 
omponent of L2 indexed by 0 or 2, thenL1 Æ (L2 �K2) Æ u 2 W .W3: If L1; L2 2 W and K1;K2 are 
omponents of L1; L2 with indi
es 0 and 2(resp.), then (L1 �K1) Æ (L2 �K2) Æ u 2 W .



a.1. morse-smale flows 179W4: If L1; L2 2 W and K1;K2 are 
omponents of L1; L2 (resp.) ea
h withindex 0 or 2, then ((L1;K1)#(L2;K2)) [m 2 W ;where K1#K2 shares the index of either K1 or K2 and m is a meridian ofK1#K2 indexed by 1.W5: If L 2 W and K is a 
omponent of L indexed by i = 0 or 2, then L0 2 W ,where L0 is obtained from L repla
ing a tubular neighborhood of K witha solid torus with three 
losed orbits, K1, K2, and K3. K1 is the 
ore andso has the same knot type as K. K2 and K3 are parallel (p; q) 
ables ofK1. The index of K2 is 1. The indi
es of K1 and K3 may be either 0 or 2,but at least one of them must be equal to the index of K.W6: If L 2 W and K is a 
omponent of L indexed by i = 0 or 2, then L0 2 W ,where L0 is obtained from L by 
hanging the index of K to 1 and pla
inga (2; q)-
able of K in a tubular neighborhood of K, indexed by i.W7: W is minimal. That is,W �W 0 for any 
olle
tion,W 0, satisfying W0-W6.Remark A.1.12 The last 
ondition, W7, means that W is generated from theindexed Hopf link in S3 by applying operations W1-W6.Theorem A.1.13 (Wada [184℄) Let F be the set of indexed links whi
h 
an berealized as the 
olle
tion of periodi
 orbits of a NMS on S3, respe
ting index.Then W = F .Outline of proof: The argument forW � F is straightforward though tedious.We must show that F obeys axiomsW0 throughW6. Example A.1.2 establishesW0. Example A.1.7 shows axiomW6 
an be realized and Example A.1.9 
an begeneralized to show F obeys W1. The remaining axioms 
an be similarly shownto hold by expli
it 
onstru
tions.3The proof of F � W uses an indu
tion strategy. Let Fr be the sub
olle
tionof F whose elements have at most r 
omponents of index 1. For r = 0, F0
ontains just the Hopf link with indi
es 0 and 2. Thus, F0 � W . Now supposethat for some r � 1, Fr�1 � W . Let L 2 Fr. The 
orresponding 
ow has around handle de
omposition. By 
areful surgery, one removes a 1-RH from this
ow and shows that two new 
ows on S3 
an be 
onstru
ted from the remaininground handles. These 
ows have at least one fewer index 1 orbit and so are inW . But the surgery is performed so that the pro
ess 
an be reversed via one ofthe moves W1; : : : ;W6. Hen
e, Fr is in W for all r. 23The only 
onstru
tion whi
h is very diÆ
ult is that of W4 | forming the 
onne
ted sum.The summary arti
le [35℄ 
ontains a helpful diagram.
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ationsRemark A.1.14 Fomenko [49℄ has developed a general program for studyingintegrable Hamiltonian 
ows on three-manifolds whi
h has fundamental 
onne
-tions to nonsingular Morse-Smale 
ows. Consider a symple
ti
 four-manifoldM with Hamiltonian H , a nondegenerate 
onstant-energy three-manifold Q =H�1(
) � M , and an additional integral F de�ned on a neighborhood of Qwhose 
riti
al points in Q form nondegenerate submanifolds. Then, we say theHamiltonian system de�ned by H is Bott-integrable on Q. This is a more gen-eral notion than that of (
omplete) integrability, in whi
h every 
onstant-energysubmanifold is integrable.For a Bott-integrable system on Q, there is a �nite 
olle
tion of 
riti
al sub-manifolds of F on Q whi
h are periodi
 orbits: these form a link LF in Q. Theonly other 
riti
al submanifolds present are singular tori. By the Liouville Theo-rem [6℄, the 
omplement of the 
riti
al submanifolds of F in Q is foliated by tori.Any 
omponent of LF is indexed with the index inherited from F . Knots of indexzero or two (lo
al minima/maxima of F ) possess tubular neighborhoods foliatedby tori ex
ept at the 
ore. Knots of index one lie on one or two \bifur
ation"tori, whi
h 
orrespond to in
e
tion points for F .Fomenko and Nguyen [50℄, using topologi
al and dynami
al methods, werethe �rst to show that ea
h periodi
 orbit of the Hamiltonian 
ow on Q withindex zero or two must be a generalized iterated torus knot: that is, it is formedfrom the unknot by the operations of 
abling and 
onne
ted sum. Cassasays,Nunes, and Mart��nez Alfaro [35℄ revisit this work and point out that the Bott-integrable energy manifold Q must also support a NMS 
ow with 
ores of theRH de
omposition related to the link LF in a natural way. Thus, they 
on
ludethat the 
lass of indexed links realizable as the set of stable periodi
 orbitsfor some H and F is generated by the axioms W0, W4, W5, W6, and W7 ofDe�nition A.1.11.From these two works, it follows that any periodi
 orbit in the integrableHamiltonian 
ow on Q must be a generalized iterated torus knot. See [35, 50℄for de�nitions and further details.Remark A.1.15 In [157℄, Saito extends Wada's theorem. Given any indexedlink L and any 3-manifold M we 
annot in general expe
t there to be a NMS
ow on M , let alone one with nonwandering set L. However, Saito develops a
anoni
al pro
edure for produ
ing a new indexed link L0, derived from any L,and a new manifold M 0 derived from M , su
h that there is a NMS 
ow on M 0with nonwandering set L0. There are some minor restri
tions on the initial linkL and M must be orientable.Remark A.1.16 Generalized iterated torus knots manifest themselves in othersettings as well. Let � be a smooth plane �eld on S3: that is, in the tangentspa
e at ea
h point there is a plane. Consider the 
lass of ve
tor �elds whi
hlie entirely within �. Su
h 
ows have 
hara
teristi
s of both two- and three-dimensional dynami
s and arise in the study of 
onta
t geometry.
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t 181In [45℄, it is shown that [generi
℄ singularities of a plane-�eld 
ow arise not inisolated points, but in embedded 
ir
les. Hen
e, the singularities of su
h a 
owgives a link. Consider the 
lass of 
ows with the simplest dynami
s: gradient-like 
ows, for whi
h the only re
urren
e is �xed points. Then the only types oflinks whi
h may arise are the links des
ribed in Wada's Theorem.A.2 Smale 
ows, abstra
tIn this se
tion we review the work of Franks and others on Smale 
ows, espe
iallynonsingular Smale 
ows on S3. These results rely on the homology theory of�ltrations asso
iated to the 
ow. As this is outside the s
ope of this work, wewill merely state results and outline appli
ations. Thus, no use of homology willbe made here. The interested reader should 
onsult [53℄ as well as the referen
esgiven there.The theory outlined 
ulminates in an abstra
t 
lassi�
ation of Smale 
owson S3 using a devi
e 
alled the Lyapunov graph. By abstra
t, we mean that theembedding types of the basi
 sets are not determined, only whi
h 
ombinationsof basi
 sets 
an be realized. The next se
tion of this appendix addresses thequestion of how they may and may not �t together with respe
t to embedding.Smale 
ows satisfy the same hyperboli
ity and transversality 
onditions asMorse-Smale 
ows, but the basi
 sets may have in�nitely many periodi
 orbits,while still being one-dimensional (or zero-dimensional if we allow for singulari-ties). Re
all from x1.2 the de�nition of a Smale 
ow:De�nition A.2.1 A 
ow �t on a manifold M is 
alled a Smale 
ow if� the 
hain re
urrent set R of �t has a hyperboli
 stru
ture,� the basi
 sets of R are zero- or one-dimensional, and� the stable manifold of any orbit in R has transversal interse
tion with theunstable manifold of any other orbit of R.Smale 
ows on 
ompa
t manifolds are stru
turely stable under C1 perturba-tions but are not dense in the spa
e of C1 
ows. It is easy to see that for dimM = 3, ea
h attra
ting and repelling basi
 set is either a 
losed orbit or �xedpoint. The admissible saddle sets, however, in
lude suspensions of irredu
iblesubshifts of �nite type and 
an be nontrivial, i.e. they 
an have in�nitely many
losed orbits. Thus, while there are no strange attra
tors or repellors, 
ompli-
ated saddle sets may exist, whi
h 
an be modeled by templates. Indeed, as weshall see, a suspension of the horseshoe, together with an attra
tor-repellor pairof periodi
 orbits, provides an important example of a nonsingular Smale 
ow.Given a suspended subshift of �nite type we 
an 
onstru
t a Markov partitionand a 
orresponding transition matrix A. We 
an en
ode additional informationabout the embedding of a basi
 set by modifying the transition matrix:



182 appendix a. morse-smale / smale flowsDe�nition A.2.2 Given a Markov partition for a 
ross se
tion of a basi
 setwith �rst return map �, assign an orientation to ea
h partition element. If thepartition is �ne enough the fun
tionO(x) = � +1 if � is orientation preserving at x;�1 if � is orientation reversing at x;is 
onstant on ea
h partition element. The stru
ture matrix S is then de�nedby Sij = O(x)Aij , where x is any point in the i-th partition element. (This isslightly di�erent then the stru
ture matrix de�ned in x5.2.)Example A.2.3 For a suspension of the full shift on two symbols modeled ina 
ow by the Lorenz template, � 1 11 1 � is the stru
ture matrix. However, ifthe suspension of the full two-shift is modeled by the horseshoe template, then� 1 1�1 �1 � is the 
orresponding stru
ture matrix.Later, we will de�ne the linking matrix of a saddle set in a Smale 
ow thaten
odes how the orbits in the saddle set link the attra
ting and repelling orbitsin the 
ow.The suspension of any irredu
ible subshift of �nite type 
an be realized asa basi
 set in a Smale 
ow on any manifold of dimension three [148℄ or greater[191℄. The te
hnique of [148℄ typi
ally introdu
es many singularities. Franks[54℄ has observed that the realization result in [148℄ holds true for any stru
turematrix.Theorem A.2.4 (Franks [54℄) Suppose S is an irredu
ible integer matrix. Thenthere exists a nonsingular Smale 
ow �t on some 3-manifold with basi
 set �whose stru
ture matrix is S. It is possible to 
hoose �t so that ea
h basi
 set of�t, ex
ept for �, 
onsists of a single 
losed orbit.Theorem A.2.5 (Franks [54℄) Suppose �t is a nonsingular Smale 
ow on S3with a basi
 set having an n�n stru
ture matrix S. Then if det(I �S) 6= 0, thegroup Zn=(I � S)Zn must be 
y
li
.Example A.2.6 The matrix S = � 1 22 1 � 
annot be realized as the stru
turematrix of a nonsingular Smale 
ow on S3, sin
e the quotient group Z2=(I�S)Z2has presentation hx; y : 2x = 2y = 0i, whi
h is isomorphi
 to Z2 � Z2.Suppose there is a single attra
ting 
losed orbit 
a, and a single repelling
losed orbit 
r, with all other basi
 sets saddles. Then we may 
ompute theabsolute value of the linking number of 
a and 
r as follows. Let �1; : : :�ndenote the saddle sets and let S1 : : : Sn denote the respe
tive stru
ture matri
es.It is shown in [51℄ that j`k (
a; 
r) j = nYi=1 j det(I � Si)j;
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t 183where the produ
t is taken to be one if n = 0. We remark that j det(I � Si)j isthe order of the group Zm=(I � Si)Zm where m is the size of Si.Example A.2.7 Given a 
ow as above with a single saddle set having stru
turematrix � �1 �1�1 �1 � ; 
a and 
r have linking number three. Figure A.7 depi
tsa realization of this example. The �gure shows an isolating neighborhood forea
h of the three basi
 sets. For 
a and 
r, these are the solid tori Va and Vrrespe
tively. Call the saddle set � and its isolating neighborhood N . Now N isisotopi
 to the unit normal bundle of a template T . The template T is shownin Figure A.8, where we see how to isotope it to look more like the templatespresented in earlier 
hapters. The exit set of N is isotopi
 to the unit normalbundle over �T and is atta
hed to �Va. We 
an now see how to atta
h �Vr to�(Va [N) and form S3.

Figure A.7: A Smale 
ow with `k (
a; 
r) = 3.If we know how the saddle sets \link" a 
olle
tion L of attra
ting and repelling
losed orbits we 
an say more: we 
an 
ompute a polynomial invariant of thelink L. This invariant is none other than the Alexander polynomial, a standardinvariant of 
lassi
al knot theory [154, 33℄.The manner in whi
h a saddle set \links" a 
olle
tion of 
losed orbits isdes
ribed by modifying the stru
ture matrix S to form a linking matrix K.Consider a 
ross se
tion of the saddle set that is homeomorphi
 to a subshift of�nite type � : �A ! �A, by a homeomorphism h. We de�ne Cantor sets fCigni=1by Ci = h(fa 2 �Aja0 = xig). As in Lemma 2.2.5, we 
an extend the fCigni=1to two-dimensional disks fDigni=1 whi
h are transverse to the ambient 
ow su
hthat (a) Ci = Di \ S, (b) �Di \R = ;, and (
) Di \ L = ;, for i = 1; :::; n.Next we pi
k a base point b in S3 � L and paths pi from b to Di, also inS3�L. Let 
ij be a segment of the 
ow going from Ci to Cj without meeting any



184 appendix a. morse-smale / smale flows

Figure A.8: A template for the 
ow in Figure A.7.of the Ck in between. Now form a loop 
onsisting of 
ij , pi, pj and, if needed, ashort segment in Di and in Dj . If the Ck have been 
hosen small enough, thenthe linking number of any su
h loop with a spe
i�ed 
omponent of L dependsonly on i and j. One 
an �nd suÆ
iently �ne fCigni=1 by 
hanging the matrixA in its shift equivalen
e 
lass. This also determines a stru
ture matrix S.De�nition A.2.8 The linking matrix K asso
iated with su
h a 
hoi
e of theCk for a given link L is then de�ned to beKij = Sijt`k11 t`k22 � � � t`k�� ;where � is the number of 
omponents of the link and `kp is the linking numberof the loops formed from segments 
onne
ting Ci to Cj and the pth 
omponentof L.Theorem A.2.9 (Franks [52℄) Suppose that �t is a nonsingular Smale 
owon S3, L is a �-
omponent link of 
losed orbits oriented by the 
ow, ea
h anattra
tor or repellor, and that fKigni=1 are linking matri
es of the saddle setswith respe
t to L. Let mij denote the linking number of the ith 
omponent of Lwith the jth 
omponent of the set of attra
tors and repellors not in L. If � = 1,i.e., L is a knot, then �L(t) = (1� t)Qi det(I �Ki)Qk(1� tm1k ) ;is an isotopy invariant of the oriented knot, up to multiples of �t�1. Thisinvariant is pre
isely the Alexander polynomial of the knot [154, 33℄. If, if � > 1,�L(t1; :::; t�) = Qi det(I �Ki)Qk(1� tm1k � � � tm�k ) ;



a.3. smale flows, embedded 185is an isotopy invariant of the oriented link, up to multiples of �t�1j . Again, thisinvariant is the Alexander polynomial of the link L.Example A.2.10 Figure A.9 shows a Smale 
ow with three basi
 sets. Theattra
tor 
a is a trefoil knot. The saddle set 
an 
learly be modeled by a Lorenztemplate. Using the obvious two-element Markov partition for the Lorenz tem-plate, we �nd that a linking matrix for the saddle set with respe
t to the one-
omponent link 
a is � t t1=t 1=t � : Thus, the Alexander polynomial of 
a is�t�1 + 1 � t. Any isolated 
losed orbit in a Smale 
ow whi
h has polynomialdi�erent from this, up to multiples of t, 
annot be isotopi
 to the trefoil.Finally, in [56℄ we have an abstra
t 
lassi�
ation of nonsingular Smale 
owson S3. The major new tool is the Lyapunov graph. Given a Smale 
ow on amanifold there exists a smooth fun
tion from the manifold to the reals whi
his non-in
reasing with respe
t to the 
ow (time) parameter [53, pages 1 and2℄. Thus, ea
h basi
 set is mapped to a point. This is 
alled a Lyapunov fun
-tion. The Lyapunov graph is de�ned by identifying 
onne
ted 
omponents ofthe inverse images of points in the real line. Ea
h vertex of the graph is a pointwhose 
onne
ted 
omponent 
ontains a basi
 set. Verti
es is labeled by the
orresponding basi
 sets and edges are oriented by the 
ow dire
tion.Suppose � is an abstra
t Lyapunov graph whose sinks and sour
es are ea
hlabeled with a single attra
ting or repelling periodi
 orbit and suppose ea
hremaining vertex is labeled with the suspension of a subshift of �nite type. Then� is asso
iated with a nonsingular Smale 
ow on S3 if and only if the followingare satis�ed: (1) The graph � is a tree with one edge atta
hed to ea
h sour
eand ea
h sink vertex. (2) If v is a saddle vertex whose basi
 set has transitionmatrix A and with e+v entering edges and e�v exiting edges thene+v � ZA + 1e�v � ZA + 1ZA + 1 � e+v + e�v :Here, ZA is a the Zeeman number de�ned by dim ker((I � A2) : Zn2 ! Zn2 ),where A2 is the mod 2 redu
tion of A, Z2 is the integers mod 2, and n is thesize of A.An abstra
t 
lassi�
ation theorem for Smale 
ows in S3 with singularitieshas been obtained by de Rezende [40℄.A.3 Smale 
ows, embeddedThe 
ontrast between Smale and Morse-Smale 
ows reveals itself not only inthe saddle sets, but also in the embedding of the isolated periodi
 orbits. For anonsingular Smale 
ow on S3, any link 
an be the attra
tor, in 
ontrast to therestri
ted 
lass des
ribed in Wada's Theorem A.1.13.
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Figure A.9: A Smale 
ow with an attra
ting trefoil, 
a, a Lorenz saddle set, andan unknotted repellor, 
r.Theorem A.3.1 (Franks [52℄) If L is any smooth link in S3 then there existsa nonsingular Smale 
ow �t on S3 su
h that L is the set of attra
tors and �thas a single unknotted repellor.Outline of Proof: Consider a disk D2 with n distinguished points pla
edalong a line within D2. There exists a Smale di�eomorphism from D2 into itselfwhi
h �xes this set of n points as attra
tors, permutes two adja
ent points, and�xes the n � 2 remaining points individually. Of 
ourse, several saddle pointsmust also exist, to separate the domains of attra
tion. The suspension of thisdi�eomorphism 
an be embedded so that the traje
tories on the n distinguishedattra
ting points tra
e out the 
losure of a standard generator �i of the braidgroup Bn (
f. x1.1): see Figure A.10. Then, the suspension 
ow is a Smale 
ow,in-
owing on �D2 � S1.By suspending the 
omposition of several su
h Smale di�eomorphisms, onemay form a nonsingular Smale 
ow on a solid torus having any braid as an at-tra
tor. Some 
are is needed to make sure the ve
tor �eld is smooth. Sin
e anylink 
an be braided (Theorem 1.1.13), adding a single repellor in the 
omple-mentary solid torus yields the desired result. 2Remark A.3.2 Noti
e that, in this 
onstru
tion, the repellor links the attra
t-ing link n times. That is, the sum of the linking numbers of the repellor overall the 
omponents of the attra
tor is n. Theorem A.3.1 may be re�ned to showthat the repellor need not link the attra
tor at all.
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Figure A.10: The suspension of a disk map in whi
h the saddle points tra
e outa braid.As a �nal variation on this theme we prove the following result, whi
h is abit weaker, but has an interesting proof:Theorem A.3.3 If L is any smooth link in S3, then there exists a nonsingularSmale 
ow with one saddle set su
h that L is a sub
olle
tion of the set of at-tra
tors, and su
h that there is a unique repellor whi
h, together with one otherattra
tor, forms a Hopf link separable from L.Proof: Figure A.11 shows a Smale 
ow whose saddle set 
an be modeled withthe template V from x3.2. The attra
ting and repelling orbits form a Hopf linkwhi
h 
an separated from the saddle set by a 2-sphere.Re
all the DA move for templates, related to the DA pro
edure of x2.2.2,and used on the horseshoe template in x4.2.1: this involves splitting a templateT along a periodi
 orbit K to obtain a new template DAK(T ) with K as anattra
tor. Figure A.12 shows this pro
ess for an orbit on V . Now, if T is a modelof a saddle set in some Smale 
ow, we may form a new Smale 
ow, repla
ingT with a saddle set modeled by DAK(T ) and a new attra
ting orbit with knottype K, linking ea
h orbit in DAK(T ) just asK did. By looking at the a
tion onbran
h line 
harts, it is 
lear that this splitting on a 
onne
ted template yields a
onne
ted template; all other basi
 set are un
hanged. In Figure A.13, we showthe result of this 
onstru
tion on the Smale 
ow of Figure A.11 using the orbitdepi
ted in Figure A.12.By Theorem 3.2.8, the link L is in V as a 
olle
tion of 
losed orbitsK1; : : : ;Kn.We apply the DA pro
ess above to K1; : : : ;Kn su

essively to produ
e the de-sired 
ow. 2Remark A.3.4 We now have a method for 
reating new Smale 
ows from oldones that at least suggests a bifur
ation pro
ess, mu
h as in Examples A.1.7 andA.1.9 of xA.1.
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Figure A.11: A universal template V in a Smale 
ow.A.3.1 Lorenz templatesWe now 
onsider the problem of realizing Smale 
ows from another viewpoint.Suppose we have a nonsingular Smale 
ow of S3 with three basi
 sets, a uniqueattra
ting 
losed orbit, a unique repelling 
losed orbit, and a unique saddle setmodeled topologi
ally by a Lorenz template. That is, there exists a neighborhoodof the saddle set foliated by lo
al stable manifolds, su
h that when the leaves ofthe stable manifolds are identi�ed, we get an embedding of the Lorenz templateL(0; 0). Let Na, Nr and NL be isolating tubular neighborhoods of the attra
tor,the repellor and the saddle set respe
tively. We ask: what are all the possible
on�gurations of su
h a system? We want to 
lassify the embeddings of Na, Nrand NL up to ambient isotopy, mirror images and 
ow reversal. To date, it ispossible only to give a partial answer.We start by showing in Figure A.14 an isolating neighborhood, NL, of theLorenz saddle set glued to a 3-ball along its exit set. Topologi
ally, the union itjust a 3-ball itself. Thus, we may build a 
ow 
onsisting of an attra
ting �xedpoint in the original 3-ball, the Lorenz saddle set, and a repelling �xed point inS3 minus the Lorenz union 3-ball.Figure A.14 also shows two ways one might atta
h handles to the 3-ball soas to turn it into a solid torus. Suppose we atta
h the handle to to the smalldisks marked C and C 0 in the manner shown. Call the resulting solid torus N 0a.If we take NL [N 0a the result is still a solid torus, and the 
omplement in S3 is
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Figure A.12: The DA move on a 
losed orbit in V .just another solid torus, N 0r. We may now build a Smale 
ow with an attra
torin N 0a, a repellor in N 0r and a Lorenz saddle set in NL.The exit set of NL 
ontains two annuli whi
h are labeled X and Y in the�gure. Call the 
ores of X and Y , x and y respe
tively. The reader should 
he
kthat x and y ea
h bound disks in �N 0a.Upon further inspe
tion the reader should be able to see that x and y 
anbe made parallel. To be more pre
ise, y and x together form the boundary ofan annulus in �N 0a.Now, instead on atta
hing a handle at C and C 0, atta
h one to B and B0as shown again in Figure A.14. This time 
all the solid torus obtained N 00a . Asbefore NL [ N 00a is a solid torus with solid torus 
omplement in S3. Thus wehave a Smale 
ow. Is it the same as the previous example?To see that these 
ows di�er, 
onsider again the loops x and y. They arestill both inessential, that is they both bound disks in �N 00a . But they are nolonger 
on
entri
. This 
an be seen from 
areful study of the �gure.These two examples are the only Smale 
ows with the three basi
 sets wespe
i�ed with both the loops x and y inessential in the boundary of the tubularneighborhood of the attra
ting orbit. We shall not prove this fa
t here, thoughthe argument is quite standard.In order to 
omplete our task we have to 
onsider two more 
ases, x and yboth essential and one essential and the other not. An example of the latter
an be obtained by atta
hing a handle to the disks on the 3-ball labeled A andB in Figure A.14. It 
an be shown that if y is essential and x is not, then theannulus Y 
an have any number of full twists if y is unknotted. If y is knotted,it must be a torus knot, and the amount of twist is �xed by the knot type of y.In all 
ases X is untwisted and the attra
tor-repellor pair forms a Hopf link. InFigure A.15 we show the y loop is a (2,1) 
urve on A. Detailed proofs of these
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Figure A.13: The template DAK(V) in a Smale 
ow.
laims 
an be found in [172℄.For an example of both x and y essential, 
onne
t a handle to the disks Aand C, so that the 
omplement in S3 is an unknotted solid torus. This wasshown above in Figure A.9. The attra
tor is a trefoil knot. It is shown in [172℄that, up to mirror images and 
ow reversal, this is the only 
ase for x and yboth essential.It is unlikely that there will ever be as 
omplete an understanding of Smale
ows, even nonsingular ones in S3, as Wada and others have provided for non-singular Morse-Smale 
ows in S3. However, we hope that the tools sket
hedhere and 
urrently under development will enable resear
hers to analyze thoseSmale 
ows in 3-manifolds that are of spe
ial interest to them.
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Figure A.14: A neighborhood of the Lorenz saddle set is glued to a 3-ball.

Figure A.15: The y loop is a (2,1) 
able.
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