Summary of Limits ¹

We restate for future reference the properties of various types of limits we have studied.

Finite Limit Laws. Let c and a be a real numbers (constants). Assume that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist and are finite. Then the following hold.

$$1. \lim_{x \to a} c = c.$$

$$2. \lim_{x \to a} x = a.$$

3.
$$\lim_{x \to a} c f(x) = c \lim_{x \to a} f(x)$$
.

4.
$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$
.

5.
$$\lim_{x \to a} f(x)g(x) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right)$$
.

6.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ provided } \lim_{x \to a} g(x) \neq 0.$$

7.
$$\lim_{x \to a} (f(x))^c = \left(\lim_{x \to a} f(x)\right)^c$$
, unless $\lim_{x \to a} f(x) = 0$ and $c < 0$.

Analogous statements are true if we replace $x \to a$ with $x \to a^+, x \to a^-$ or $x \to \pm \infty$.

Infinite Limit Laws. Let $a, L \neq 0$ and $c \neq 0$ be real constants. Let p,q, n, z, and k functions such that $\lim_{x \to a} p(x) = \infty, \lim_{x \to a} q(x) = \infty, \lim_{x \to a} z(x) = 0$ and $\lim_{x \to a} k(x) = L$. Then the following hold.

$$1. \lim_{x \to a} p(x) + q(x) = \infty$$

$$2. \lim_{x \to a} p(x) \pm k(x) = \infty$$

3.
$$\lim_{x \to a} -p(x) \pm k(x) = -\infty$$

$$4. \lim_{x \to a} p(x)q(x) = \infty$$

¹© Michael C. Sullivan, September 9, 2011

$$5. \lim_{x \to a} -p(x)q(x) = -\infty$$

6.
$$\lim_{x \to a} cp(x) = \operatorname{sign}(c) \infty$$

7.
$$\lim_{x \to a} k(x)p(x) = \text{sign}(L) \infty$$

8.
$$\lim_{x \to a} \frac{1}{p(x)} = 0$$

9. No conclusion can be drawn for $\lim_{x\to a} p(x)z(x)$ or $\lim_{x\to a} p(x)-q(x)$.

Analogous statements are true if we replace $x \to a$ with $x \to a^+, x \to a^-$ or $x \to \pm \infty$.

The infinite limit laws may abbreviated as follows.

1.
$$\infty + \infty = \infty$$

$$2. \infty \pm L = \infty$$

$$3. -\infty \pm L = -\infty$$

4.
$$\infty \cdot \infty = \infty$$

5.
$$-\infty \cdot \infty = -\infty$$

$$6\&7. \ c \infty = \text{sign}(c) \infty$$

8.
$$\frac{1}{\infty} = 0$$

The Removable Singularity Rule. Suppose g(x) is continuous on (a,c) and that f(x)=g(x) on an $(a,b)\cup(b,c)$. Then $\lim_{x\to b}f(x)=g(b)$.

The Composition Theorem. If $\lim_{x\to a}g(x)=P$ and $\lim_{y\to P}f(y)=L$ then $\lim_{x\to a}f(g(x))=L$. This holds true when any of a,P or L are infinities. If f is continuous at P then this can be written as

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(L).$$

The Squeeze Theorem. Suppose $f(x) \leq g(x) \leq h(x)$ on a suitable domain. Then $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x) \leq \lim_{x \to a} h(x)$, provided the limits exist. If $\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$ then $\lim_{x \to a} g(x) = L$. This holds when $L = \pm \infty$ and for limits as $x \to \pm \infty$ or one sided limits. (The reader should be able to determine what is meant by a *suitable domain*.)