Summary of Limits ${ }^{1}$

We restate for future reference the properties of various types of limits we have studied.

Finite Limit Laws. Let c and a be a real numbers (constants). Assume that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist and are finite. Then the following hold.

1. $\lim _{x \rightarrow a} c=c$.
2. $\lim _{x \rightarrow a} x=a$.
3. $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$.
4. $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$.
5. $\lim _{x \rightarrow a} f(x) g(x)=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$.
6. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ provided $\lim _{x \rightarrow a} g(x) \neq 0$.
7. $\lim _{x \rightarrow a}(f(x))^{c}=\left(\lim _{x \rightarrow a} f(x)\right)^{c}$, unless $\lim _{x \rightarrow a} f(x)=0$ and $c<0$.

Analogous statements are true if we replace $x \rightarrow a$ with $x \rightarrow a^{+}, x \rightarrow a^{-}$ or $x \rightarrow \pm \infty$.

Infinite Limit Laws. Let $a, L \neq 0$ and $c \neq 0$ be real constants. Let p, q, n, z, and k functions such that $\lim _{x \rightarrow a} p(x)=\infty, \lim _{x \rightarrow a} q(x)=\infty, \lim _{x \rightarrow a} z(x)=0$ and $\lim _{x \rightarrow a} k(x)=L$. Then the following hold.

1. $\lim _{x \rightarrow a} p(x)+q(x)=\infty$
2. $\lim _{x \rightarrow a} p(x) \pm k(x)=\infty$
3. $\lim _{x \rightarrow a}-p(x) \pm k(x)=-\infty$
4. $\lim _{x \rightarrow a} p(x) q(x)=\infty$

[^0]5. $\lim _{x \rightarrow a}-p(x) q(x)=-\infty$
6. $\lim _{x \rightarrow a} c p(x)=\operatorname{sign}(c) \infty$
7. $\lim _{x \rightarrow a} k(x) p(x)=\operatorname{sign}(L) \infty$
8. $\lim _{x \rightarrow a} \frac{1}{p(x)}=0$
9. No conclusion can be drawn for $\lim _{x \rightarrow a} p(x) z(x)$ or $\lim _{x \rightarrow a} p(x)-q(x)$.

Analogous statements are true if we replace $x \rightarrow a$ with $x \rightarrow a^{+}, x \rightarrow a^{-}$or $x \rightarrow \pm \infty$.

The infinite limit laws may abbreviated as follows.

1. $\infty+\infty=\infty$
2. $\infty \pm L=\infty$
3. $-\infty \pm L=-\infty$
4. $\infty \cdot \infty=\infty$
5. $-\infty \cdot \infty=-\infty$

6\&7. $c \infty=\operatorname{sign}(c) \infty$
8. $\frac{1}{\infty}=0$

The Removable Singularity Rule. Suppose $g(x)$ is continuous on (a, c) and that $f(x)=g(x)$ on an $(a, b) \cup(b, c)$. Then $\lim _{x \rightarrow b} f(x)=g(b)$.

The Composition Theorem. If $\lim _{x \rightarrow a} g(x)=P$ and $\lim _{y \rightarrow P} f(y)=L$ then $\lim _{x \rightarrow a} f(g(x))=L$. This holds true when any of a, P or L are infinities. If f is continuous at P then this can be written as

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(L)
$$

The Squeeze Theorem. Suppose $f(x) \leq g(x) \leq h(x)$ on a suitable domain. Then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x) \leq \lim _{x \rightarrow a} h(x)$, provided the limits exist. If $\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)$ then $\lim _{x \rightarrow a} g(x)=L$. This holds when $L= \pm \infty$ and for limits as $x \rightarrow \pm \infty$ or one sided limits. (The reader should be able to determine what is meant by a suitable domain.)

[^0]: ${ }^{1}$ ©Michael C. Sullivan, September 9, 2011

