Some Notation From Set Theory for Calculus Students

A set is a collection of elements. The expression " $p \in S$ " means p is an element of the set S. A set may be defined in several ways: in ordinary English, e.g., let A be the set of positive even integers; by listing its elements within braces, e.g., let $A = \{2, 4, 6, 8, ...\}$; or by using "set builder" notation, e.g., $A = \{n \in \mathbb{Z} \mid n > 0 \text{ and } n \text{ is even }\}$, read, A is the set of all integers n such that n > 0 and n is even (\mathbb{Z} is the standard notation for the integers).

A set does not have an order. Thus $\{a,b\} = \{b,a\}$. An **ordered set** is a set together with an ordering. When we want to stress that a set has been endowed with an ordering we will use parenthesizes instead of braces: (a,b) is an ordered set and is not equal to (b,a).

The following notations are standard.

- $\phi = \{\}$, the empty set.
- $A \subset B$: read A is a subset of B, means every element of A is an element of B. Example: $\{2,5\} \subset \{1,2,3,4,5\}$.
- $A \cup B$: read A union B, means the set of all elements that are in A or in B. Example: $\{\$, *, !\} \cup \{\alpha, !, \star, 17\} = \{\$, *, !, \alpha, \star, 17\}$.
- $A \cap B$: read A intersection B, means the set of all elements that are in A and in B. Example: $\{\$, *, !\} \cap \{\alpha, !, \star, 17\} = \{!\}$.
- A-B: read A minus B, means the set of all elements of A that are not elements of B. Example: $\{\$,*,!\}-\{\alpha,!,\star,17\}=\{\$,*\}.$
- $A \times B$: read A cross B, means the set of ordered pairs (a,b) where $a \in A$ and $b \in B$. Since there is a natural one-to-one correspondence between $(A \times B) \times C$ and $A \times (B \times C)$, $((a,b),c) \longleftrightarrow (a,(b,c))$, we shall ignore the distinction between them and use the notation $A \times B \times C$ for the set $\{(a,b,c) \mid a \in A, b \in B, \text{ and } c \in C\}$. Other multiple cross products are defined similarly. Examples: $\{1,3\} \times \{0,1,2\} = \{(1,0),(1,1),(1,2),(3,0),(3,1),(3,2)\}$. $\{*,\#\} \times \{\%\} = \{(*,\%),(\#,\%)\}$.
- $A^n = A \times \cdots \times A$, n times. Example: $\{2,3\}^3 = \{(2,2,2), (2,2,3), (2,3,2), (2,3,3), (3,2,2), (3,2,3), (3,3,2), (3,3,3)\}$.

Some standard sets are:

- \mathbb{Z} : the integers (most likely from the German Zahl, meaning number),
- \mathbb{Q} : the rational numbers (quotients),
- \mathbb{R} : the real numbers, and
- \mathbb{C} : the complex numbers.

Remark: The sets \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are normally given an ordering. Interestingly, \mathbb{C} is not typically ordered.

Interval Notation.

Remark: The notation "(a, b)" is ambiguous; it could represent an interval or an ordered pair. One has to consider the context to understand the intended meaning. On behalf of mathematicians everywhere I apologize for any in convenience this may cause.

Examples.

- $(-\infty, -\sqrt{7}] \cup [\sqrt{7}, \infty) = \{x \in \mathbb{R} \mid x \le -\sqrt{7}\} \cup \{x \in \mathbb{R} \mid x \ge \sqrt{7}\} \text{ is the solution set for } x^2 7 \ge 0.$
- $(-\infty,0) \cup (0,\infty) = \mathbb{R} \{0\}$ is the natural domain of 1/x.
- \mathbb{R}^2 is the plane. \mathbb{R}^3 is 3-dimensional space. \mathbb{R}^4 is 4-dimensional space. And so on.
- $\phi \subset A$, $\phi = A \cap \phi$, and $A = A \cup \phi$ are true statements for all sets A.
- $\{x \in \mathbb{R} \mid -2 \le x < 5\} = [-2, 5) = [-2, 7] \cap (-10, 5).$
- $S = [0,1] \times [0,1]$ is the *unit square* in the plane \mathbb{R}^2 with corners (0,0), (1,0), (0,1), and (1,1).

Quantifiers. The symbols \forall and \exists are rather handy. \forall means "for all." \exists , means "there exists." They are called *quantifiers* and are commonly used in logic.

Examples.

- $\forall x \geq 0 \ \exists y \geq 0$ such that $y^2 = x$. This means, every nonnegative real number has a nonnegative square root.
- A function f has a relative maximum at c if $\exists \epsilon > 0$ such that $\forall x \in (c \epsilon, c + \epsilon)$ we have $f(x) \leq f(c)$.
- A function f is unbounded from above if $\forall B > 0 \ \exists x \in \mathbb{R}$ such that f(x) > B.

Problems.

- 1. Describe $[0,1] \times [0,2] \times [0,3]$.
- 2. Simplify $((1,3) \cap (2,5)) \cup [3,4)$.
- 3. Let $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 9\}$, $B = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4\}$, and $C = \{(x,y) \in \mathbb{R}^2 \mid y \ge 0\}$. Draw A B, A C, $A \cap C$, $(A B) \cap C$, and $A (B \cap C)$.
- 4. Find the solution set in \mathbb{R}^2 of $\sin x \cos y = 0$.
- 5. Draw $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z} \times \mathbb{R}$, and $((0,1] \cup \{2,3\}) \times ([-2,-1] \cup (2,3))$ as subsets of \mathbb{R}^2 .
- 6. Let A be a set. What is $A \times \phi$?
- 7. Let A, B, and C be sets. Prove that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$. (You can draw pictures to "see" this, but you need to reason from the definitions to prove it.)
- 8. (a) Write a definition for a point to be a relative minimum of a function using quantifiers.
 - (b) Write a definition for a function to be unbounded from below using quantifiers.
 - (c) Translate " $\forall \ \delta > 0 \ \exists \ N \in \mathbb{Z}$ such that \forall integers n > N we have $0 < \frac{1}{n} < \delta$ " into English. Is it a true statement?