
The Gram-Schmidt Process 1

In this section all vector spaces will be subspaces of some R
m.

Definition .1. Let S = {v1, . . . ,vn} ⊂ R
m. The set S is said to be orthog-

onal if v1 • vj = 0 whenever i 6= j. If in addition |vi| = 1 for each i then we
say S is orthonormal.

The goal of this section is to answer the following question. Given a basis
for a vector space V , how can we find an orthonormal basis for V ? First we
verify that an orthogonal set is linearly independent.

Theorem .2. Let {v1, . . . ,vn} ⊂ R
m be a set of nonzero vectors and suppose

v1 • vj = 0 whenever i 6= j. Then {v1, . . . ,vn} is linearly independent.

Proof for n=4. Suppose

c1v1 + c2v2 + c3v3 + c4v4 = 0. (∗)

We shall solve for c1 by taking the dot product of both sides with v1.

v1 • (c1v1 + c2v2 + c3v3 + c4v4) = v1 • 0

(c1v1 • v1 + c2v1 • v2 + c3v1 • v3 + c4v1 • v4) = 0

c1|v1|2 + c20 + c30 + c40 = 0

c1|v1|2 = 0

Since |v1| 6= 0 we have that c1 = 0.
We shall solve for c2 by taking the dot product of both sides of (∗) with

v2.

v2 • (c1v1 + c2v2 + c3v3 + c4v4) = v2 • 0

(c1v2 • v1 + c2v2 • v2 + c3v2 • v3 + c4v2 • v4) = 0

c10 + c2|v2| + c30 + c40 = 0

c2|v2| = 0

Since |v2| 6= 0 we have that c2 = 0.
Likewise c3 = 0 and c4 = 0. Thus {v1,v2,v3,v4} is linearly independent.
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Problem 1. Write out the general proof for Theorem .2.

Theorem .3 (The Gram-Schmidt Process). Let {u1, . . . ,un} be a basis for

a vector space V . Let v1 = u1. For k = 2, . . . , n let

vk = uk −
k−1
∑

i=1

vi • uk

vi • vi

vi

and for k = 1, . . . , n let wi =
vi

|vi|
. Then {v1, . . . ,vn} is an orthogonal basis

for V and {w1, . . . ,wn} is an orthonormal basis for V .

Explanation. Let’s suppose n = 4 and write out the formulas. Of course
v1 = u1 is straight forward. Recall from ?? that the projection of u in the
direction of v is

proj
v
u =

v • u

v • v
v.

Thus, in the formula below we project u2 in the direction of v1and subtract
this from u2. What is left will be perpendicular to v1.

v2 = u2 −
v1 • u2

v1 • v1

v1

Next we project u3 first in the direction of v1 and then in the direction of
v2. Subtracting these from u3 produces a vector perpendicular to both v1

and v2.

v3 = u3 −
v1 • u3

v1 • v1

v1 −
v2 • u3

v2 • v2

v2

Finally, we find the projections of u4 in the directions of v1, v2 and v3.
Subtracting these from u4 produces a vector perpendicular to v1, v2 and v3.

v4 = u4 −
v1 • u4

v1 • v1

v1 −
v2 • u4

v2 • v2

v2 −
v3 • u4

v3 • v3

v3

Proof of Theorem .3. We check that v1 is perpendicular to v2.

v1•v2 = v1•
(

u2 −
v1 • u2

v1 • v1

v1

)

= v1•u2−
v1 • u2

v1 • v1

v1•v1 = v1•u2−v1•u2 = 0

Next we check that v3 is perpendicular to v1.

v1 • v3 = v1 •
(

u3 −
v1 • u3

v1 • v1

v1 −
v2 • u3

v2 • v2

v2

)

=
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v1 • u3 −
v1 • u3

v1 • v1

v1 • v1 −
v2 • u3

v2 • v2

v1 • v2 = v1 • u3 − v1 • u3 − 0 = 0

We used the fact that we already knew v1 •v2 = 0. Now we check that v3 is
perpendicular to v2.

v2 • v3 = v2 •
(

u3 −
v1 • u3

v1 • v1

v1 −
v2 • u3

v2 • v2

v2

)

= v2 • u3 − 0 − v2 • u3 = 0.

Again we used v1 • v2 = 0.
We can continue like this. Next we would show that v4 is perpendicular

to v1, v2 and v3. The reader should be able to work this out and see that
the calculations are similar to what we have just done. We use the Principle
of Mathematical Induction to cover all positive integers n.

Assume we know that vk−1 is perpendicular to v1, . . . ,vk−2. Let vj ∈
{v1, . . . ,vk−1}. We will show vk • vj = 0.

vj • vk = vj •
(

uk −
k−1
∑

i=1

vi • uk

vi • vi

vi

)

= vj • uk −
k−1
∑

i=1

vi • uk

vi • vi

vj • vi =

vj • uk − vj • uk = 0

since vj • vi = 0 unless i = j.
Therefore {v1, . . . ,vn} is orthogonal. There are no zero vectors in it since

the original vectors {u1, . . . ,un} were linearly independent. Dividing each
vector by its magnitude produces an orthonormal set.

Example 1. Find an orthonormal basis for the vector space spanned by
{[

1
2

]

,

[

−18
4

]}

. Answer. We don’t need the Gram-Schmidt Process. These

vectors span R
2. We can just use the standard basis for R

2.

Example 2. Find an orthonormal basis for the vector space spanned by






















0
1
1
0









,









1
2
0
−1









,









1
0
1
2























.
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Solution. Let v1 =









0
1
1
0









. Then

v2 = u2 −
v1 • u2

v1 • v1

v1 = u2 −
2

2
v1 =









1
1
−1
−1









Next

v3 = u3 −
v1 • u3

v1 • v1

v1 −
v2 • u3

v2 • v2

v2 = u3 −
1

2
v1 −

−2

4
v2 =









3/2
0
0

3/2









Dividing each of these by its length gives























0

1/
√

2

1/
√

2
0









,









1/2
1/2
−1/2
−1/2









,









1/
√

2
0
0

1/
√

2























Problem 2. Find an orthonormal basis for each vector space with the given
basis below.

a.

{[

2
3

]}

b.











2
1
1



 ,





0
2
3











c.























1
0
1
0









,









0
1
0
1









,









1
0
0
1























d.























1
1
1
1









,









1
1
1
0









,









1
1
0
0























e.























1
1
1
−1









,









1
2
3
3

















2
0
1
0























f.



































2
3
1
0
1













,













1
1
2
1
0



































Problem 3. Find an orthonormal basis for the plane given by 2x+3y−z = 0.
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Problem 4. Consider





1 2 1 1
0 1 1 3
2 3 4 8













w
x
y
z









= 0

.
a. Find the basis for the solution space produced by putting the matrix into
reduced row echelon form.
b. Find an orthonormal basis for the solution space.
c. Find the transition matrix that will convert coordinates vectors with
respect to the first basis into convert coordinates vectors with respect your
orthonormal basis.

Problem 5. Find orthonormal bases for the eigenspaces of













1 −1 0 0 2
0 2 0 0 0
−1 0 4 −1 1
−1 0 2 1 1
−1 −1 0 0 4













.

0.1 Maple Command for the Gram-Schmidt Process

Here is an example illustrating how to use Maple’s GramSchmidt command.
The command is part of the LinearAlgebra package. If you leave off the
normalized option the GramSchmidt command will return an orthogonal set
of vectors that have not been normalized.

> GramSchmidt([<1,1,0,1>,<0,1,1,1>,<2,3,2,3>],normalized);

















1/3
√

3

1/3
√

3
0

1/3
√

3









,









−2/15
√

15

1/15
√

15

1/5
√

15

1/15
√

15









,









1/5
√

10

− 1/10
√

10

1/5
√

10

− 1/10
√

10
















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0.2 Inner Product Spaces [Optional]

Definition .4. An Inner product space is a vector space V together with
a function taking pairs of vectors to the reals with the properties listed below.
The function is called an inner product and is denoted by 〈v,u〉. Let r ∈ R

and let u, v and w be in V .

• 〈v,v〉 ≥ 0 with equality holding only when v = 0.

• 〈v,u〉 = 〈u,v〉.

• 〈rv,u〉 = r 〈v,u〉.

• 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉.

The dot product in any subspace of R
n is an example. Here is another.

Let P be the set of all polynomials regarded as a vector space. For f and g
in P define

〈f, g〉 =

∫

1

−1

f(x)g(x) dx.

For example 〈x + 1, x2 + x〉 =
∫

1

−1
(x + 1)(x2 + x) dx =

∫

1

−1
x3 + 2x2 + x dx =

4/3. The reader should check that this gives an inner product space.
The results about projections, orthogonality and the Gram-Schmidt Pro-

cess carry over to inner product spaces. The magnitude of a vector v is
defined as

√

〈v,v〉.

Problem 6. In an inner product space prove that 〈v, ru〉 = r 〈v,u〉.

Problem 7. In an inner product space prove that 〈v, 0〉 = 0.

Problem 8. Let S = span {sin(x), sin(2x), sin(3x), sin(4x)}. Let the inner

product be 〈f, g〉 =
∫

2π

0
f(x)g(x) dx. Show that S is orthogonal and hence

forms a basis for S. Find an orthonormal basis for S. Hint:
∫

sin mx sin nx dx = −sin((m + n)x)

2(m + n)
+

sin((m − n)x)

2(m − n)
+ C

for m 6= ±n. But you knew that!

Problem 9. For the inner product used above for polynomials compute
〈x2, x3〉, 〈x + 1, x5 + x4〉 and 〈x2 + 3x + 1, x3 − x〉.
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Problem 10. a. Find an orthonormal basis for P4 with inner product above
starting with the standard basis {1, x, x2, x3, x4}.
b. Find the transition matrix that takes coordinate vectors with respect to
the standard basis to coordinate vectors with respect to the basis you found.

Problem 11. Let A =

[

1 2
2 3

]

. For v and u in R
2 define v ∗ u = vTAu.

a. Compute

[

1
1

]

∗
[

2
3

]

.

b. Compute

[

1
1

]

∗
[

5
−1

]

.

c. Prove that ∗ is an inner product on R
2.
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