(%i1) 1+4;

Result

(%i5) 3! + sin(pi/2);

Result

That's not what I wanted!! [Use Cell menu and select "insert text cell" to
write non-math comments. Then select "insert input cell", to get back to math.]

(%i7) 3! + sin(%pi/2);

Result

(%i9) exp(log(6));

Result

So, log is the command for the natural log, that is log base e. For other bases use the change of base formula.

Next we do three derivatives, a simple first derivative, a thrid derivative, and that a second partial derivative.

(%i12) diff(cos(x^2)+x^7-tan(exp(x)),x);

Result

(%i13) diff(cos(x^2),x,3);

Result

(%i15) diff(sin(x*y)+x^2y^3,y,2);

Result

That error message is awful! What want wrong? I left out the * in x^2 * y^3.

(%i15) diff(sin(x*y)+x^2*y^3,y,2);

Result

Next up, integration.

(%i17) integrate(x^2,x);

Result

It forgot the +C. Minus 1 point.

(%i18) integrate(cos(x^2),x);

Result

When something lke this happens it means the function does not have an anti-derivative that can be expressed in closed form.

(%i19) integrate(x*cos(x^2),x);

Result

(%i64) integrate(x*cos(x^2),x,3,7);

Result

(%i65) float(%);

Result

Series and limits.

(%i27) powerseries(exp(x^2),x,0);

Result

(%i28) powerseries(x*sin(x),x,0);

Result

(%i29) limit(1/x,x,infinity);

Result

(%i31) limit(sin(2*x)/sin(3*x),x,0);

Result

Now some basic graphing. The plot will appear in a pop up window. You have to close this window before going on.

(%i45) plot2d(sin(x^2),[x,0,10]);

Result

--> plot2d([cos(x),sin(3*x)],[x,0,4*%pi]);

Result

(%i43) load(implicit_plot)$

(%i44) implicit_plot(x^4+y^4=1,[x,-2,2],[y,-2,2]);

Result

(%i61) plot2d([parametric, sin(t), cos(3*t), [t, 0, 2*%pi]],[nticks,100]);

Result

--> plot3d(sin(x*y),[x,0,1*%pi],[y,0,1*%pi]);

Result

(%i62) plot3d([4-x^2-y^2,6-2*x-2*y,[x,-3,3],[y,-3,3]]);

Result

-->


Created with wxMaxima.