This is an example I did in class for Section 13.6 on Surface Area.

Let z=f(x,y)=3x+y2. Find surface area over the triangular region with vertices (0,0), (0,1), (1,1) in the xy-plane.

First, we plot the surface.

> with(plottools):with(plots):

> graph:=plot3d(3*x+y^2,x=0..y,y=0..1):

> l1:=line([0,0,0],[0,1,0],color=blue,thickness=3):
l2:=line([0,0,0],[1,1,0],color=blue,thickness=3):

l3:=line([1,1,0],[0,1,0],color=blue,thickness=3):

l4:=line([1,1,0],[1,1,4],color=black,linestyle=3,thickness=3):

l5:=line([0,1,0],[0,1,1],color=black,linestyle=3,thickness=3):

> display(graph,l1,l2,l3,l4,l5);

[Plot]

To compute the surface area, we find fx = 3 and fy = 2y. Thus the integrand is sqrt(32 + (2y)2 + 1).

> int(int(sqrt(4*y^2+10),x=0..y),y=0..1);

7/30*10^(1/2)*7^(1/2)*5^(1/2)-5/6*10^(1/2)

> evalf(%);

1.730035567