Frenet-Serret formulas and Torsion

We shall work through Problems 43, 45 and 46 in Section 10.8. These lead us to define the *torsion* of a space curve. At the end we discuss how torsion is a natural extension of the notions of velocity and curvature.

Recall the formulas in the box below.

$$\mathbf{B} = \mathbf{T} \times \mathbf{N} \quad \mathbf{B} \times \mathbf{T} = \mathbf{N} \quad \mathbf{N} \times \mathbf{B} = \mathbf{T}$$
$$\mathbf{u} \bullet (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \bullet \mathbf{w}$$
$$(\mathbf{u} \times \mathbf{v})' = \mathbf{u}' \times \mathbf{v} + \mathbf{u} \times \mathbf{v}'$$

43. Show that $\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$.

Proof. By Definition 8 $\left|\frac{d\mathbf{T}}{ds}\right| = \kappa$ so $\frac{d\mathbf{T}}{ds}$ will have the same magnitude as $\kappa \mathbf{N}$. Recall we defined $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$, but the parameterization used only affects the \mathbf{N} by a scalar factor of ± 1 . If arc length s is defined to be increasing with t then the sign choice is the same. Thus $\mathbf{N}(s) = \frac{\mathbf{T}'(s)}{|\mathbf{T}'(s)|}$. Hence $\mathbf{N}(s)$ has the same direction as $\mathbf{T}'(s) = \frac{d\mathbf{T}}{d\mathbf{T}}$ and by definition $\mu \geq 0$. Thus, $\frac{d\mathbf{T}}{d\mathbf{T}}$ and $\mu \mathbf{N}$ have the same direction as $\mathbf{T}'(s) = \frac{d\mathbf{T}}{ds}$ and by definition $\kappa \ge 0$. Thus, $\frac{d\mathbf{T}}{ds}$ and $\kappa \mathbf{N}$ have the same direction and magnitude, so they are equal.

45.a. Show that $\frac{d\mathbf{B}}{ds} \bullet B = 0$.

Proof. Since $|\mathbf{B}| = 1$ is a constant, Example 12 from 10.7 gives us that $B' \bullet B =$ 0.

b. Show that $\frac{d\mathbf{B}}{ds} \bullet \mathbf{T} = 0$.

Proof.

$$\mathbf{B'} \bullet \mathbf{T} = (\mathbf{T} \times \mathbf{N})' \bullet T$$

= $(\mathbf{T'} \times \mathbf{N} + \mathbf{T} \times \mathbf{N'}) \bullet \mathbf{T}$
= $(\mathbf{T'} \times \mathbf{N}) \bullet \mathbf{T} + (\mathbf{T} \times \mathbf{N'}) \bullet \mathbf{T}$
= $(\kappa \mathbf{N} \times \mathbf{N}) \bullet \mathbf{T} - (\mathbf{N'} \times \mathbf{T}) \bullet \mathbf{T}$
= $\kappa \mathbf{0} \bullet \mathbf{T} - \mathbf{N'} \bullet (\mathbf{T} \times \mathbf{T})$
= $0 - \mathbf{N'} \bullet \mathbf{0}$
= 0

c. Since $\frac{d\mathbf{B}}{ds}$ is perpendicular to both **B** and **T**, it must be parallel to **N**. We define $-\tau(s)$ to be the scaling factor such that $\frac{d\mathbf{B}}{ds} = -\tau(s)\mathbf{N}$. **d.** If a curve lives in a fixed plane then **B** is always the same unit vector perpendicular to that plane. Since **B** does not change $\frac{d\mathbf{B}}{ds} = 0$. Thus $\tau(s) = 0$ for

such a curve. The reverse is true as well. More generally we can think of $\tau(s)$ to be a measure of the tendency of a curve to move away from its osculating plane.

46. Show that $\frac{d\mathbf{N}}{ds} = -\kappa \mathbf{T} + \tau \mathbf{B}.$

Proof. From 43 we have $\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$ and from 45c we know $\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}$. $\mathbf{N}' = (\mathbf{B} \times \mathbf{T})' = \mathbf{B}' \times \mathbf{T} + \mathbf{B} \times \mathbf{T}'$ $= (-\tau \mathbf{N}) \times \mathbf{T} + \mathbf{B} \times (\kappa \mathbf{N})$ $= \tau (\mathbf{T} \times \mathbf{N}) - \kappa (\mathbf{N} \times \mathbf{B})$ $= \tau \mathbf{B} - \kappa \mathbf{T}$

Summary. Let $\mathbf{r}(t)$ be a smooth space curve. The three equations in the box below are called the *Frenet-Serret formulas*.

$\begin{vmatrix} \frac{d\mathbf{N}}{ds} = -\kappa \mathbf{T} + \tau \mathbf{B} \\ \frac{d\mathbf{B}}{ds} = -\tau \mathbf{N} \end{vmatrix}$	$\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$
$\frac{d \mathbf{D}}{d \mathbf{D}} = -\tau \mathbf{N}$	
	NT NT

Sometimes they are expressed in matrix form.

$$\begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix}' = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix}$$

- At any given time the curve has a location. The velocity v is the tendency to move away from the present location. If v is always 0 then we will stay at the our present location forever.
- At any given time the curve has a tangent line. The curvature κ is the tendency to move away from the present tangent line. If κ is always 0 then we will stay on the present tangent line forever.
- At any given time the curve has an osculating plane. The torsion τ is the tendency to move away from the present osculating plane. If τ is always 0 then we will stay on the present osculating plane forever.

However, velocity depends on the parameterization whereas curvature and torsion are geometric properties of the curve independent of the parameterization.

© Michael C. Sullivan, 2019.