
Vector Calculus Summary1

Types of Integrals. We can integrate along a curve C, over a surface S and through
a 3-dimension region V . If the integrand is 1 we get arc length, surface area and volume
respectively. If we are given some “density” function we can find the “mass”.

Example 1. Let C be given by r(t) = 〈t, t2, t3〉 for 0 ≤ t ≤ 1. Let S be the portion
of z = f(x, y) = x2 + 2y + 3 over the unit disk U . Let V be the region inside the cylinder
x2 + y2 = 1, below S and above the xy-plane. Find the length of C, the area of S and the
volume of V .

Solution.

Length =

∫
C

ds =

∫ 1

0

|r′(t)| dt =

∫ 1

0

√
1 + 4t2 + 9t4 dt ≈ 1.863022983 (done numerically).

Surface area =

∫∫
S

dS =

∫∫
U

√
1 + (zx)2 + (zy)2 dA =

∫ 2π

0

∫ 1

0

√
1 + (2x)2 + 22 r dr dθ =

∫ 2π

0

∫ 1

0

√
5 + 4r2 cos2 θ r dr dθ ≈ 7.670233535 (done numerically).

Volume =

∫∫∫
V

dV =

∫ 2π

0

∫ 1

0

∫ r2 cos2 θ+2r sin θ+3

0

r dz dr dθ =∫ 2π

0

∫ 1

0

(r2 cos2 θ + 2r sin θ + 3) r dr dθ =
13

4
π.

Example 2. Use the same C, S and V . Let h(x, y, z) = xyz be a density function. Find
the masses of C, S and V . In the first case we assume h has units of mass per unit length,
in the second mass per unit area and in the last mass per unit volume. Other applications
might involve electric charge instead of mass.

Solution.

Mass of C=

∫
C

h ds =

∫ 1

0

h(t, t2, t3)|r′(t)| dt =

∫ 1

0

t6
√

1 + 4t2 + 9t4 dt

≈ 0.442101217 (done numerically).

Mass of S =

∫∫
S

h dS =
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∫∫
U

h(x, y, x2 + 2y + 3)
√

1 + (zx)2 + (zy)2 dA = 0 (done in the Appendix at the end).

Mass of V =

∫∫∫
V

h(x, y, z) dV =

∫ 2π

0

∫ 1

0

∫ r2 cos2 θ+2r sin θ+3

0

h(r cos θ, r sin θ, z) r dz dr dθ =

∫ 2π

0

∫ 1

0

∫ r2 cos2 θ+2r sin θ+3

0

(r2 cos θ sin θ)z r dz dr dθ =∫ 2π

0

∫ 1

0

(r2 cos θ sin θ)(r2 cos2 θ + 2r sin θ + 3) r dr dθ =∫ 2π

0

∫ 1

0

r5 cos3 θ sin θ + 2r4 cos θ sin2 θ + 3r3dr dθ =∫ 2π

0

1

6
cos3 θ sin θ +

2

5
cos θ sin2 θ +

3

4
dθ = 0 + 0 +

3

4
2π =

3π

2

Integrals of Vector Fields: Work & Flux. If F is a vector field we can compute the
work done as we travel along a curve C by taking the integral of the component of F tangent
to C along C.

Work =

∫
C

F • T ds.

We can compute the flux of F through S by using the surface integral over S of the
component of F normal to S.

Flux =

∫∫
S

F •N dS.

Example 3. Using the same S and C as before and F = 〈3x+ y, z, z2〉 find the work
done along C and the flux through S.

Solution.

Work =

∫
C

F • T ds =

∫ 1

0

〈
3t+ t2, t3, t6

〉
• r′(t)

|r′(t)|
|r′(t)| dt =∫ 1

0

〈
3t+ t2, t3, t6

〉
•
〈
1, 2t, 3t2

〉
dt =

∫ 1

0

3t+ t2 + 2t4 + 3t8 dt =

3/2 + 1/3 + 2/5 + 3/7 = 559/210 ≈ 2.6619047619.

To compute flux we need to figure out what to use for N and dS. To get N let g(x, y, z) =
z − f(x, y). Then let N = 5g/| 5 g| = −2x,−2,1√

4x2+5
. As before dS =

√
f 2
x + f 2

y + 1dA =√
4x2 + 5dA. Therefore,



Flux =

∫∫
S

F •N dS =

∫∫
U

F • 5g dA =∫∫
U

〈
3x+ y, z, z2

〉
• 〈−2x,−2, 1〉 dA =

∫∫
U

−(3x+ y)2x− 2z + z2dA =∫∫
U

−(3x+ y)2x− 2(x2 + 2y + 3) + (x2 + 2y + 3)2 dA =∫∫
U

−2x2 − 2xy + 8y + 3 + x4 + 4x2y + 4y2 dA =∫ 2π

0

∫ 1

0

(−2r2 cos2 θ−2r2 cos θ sin θ+8r sin θ+3+r4 cos4 θ+4r3 cos2 θ sin θ+4r2 sin2 θ) r dr dθ =∫ 1

0

(−2πr2 − 0 + 0 + 6π + r43π/4 + 0 + 4π) r dr =

∫ 1

0

10πr − 2πr3 + (3π/4)r5 dr =

5π − 2π/3 + 3π/5 = 74/15 ≈ 4.9333

Integrating over Vector Fields: Short Cuts, FTC, Div Thm, Stokes’ Thm.
If F is a conservative field, that is if there exists a scalar function f such that F = 5f ,

then the Fundamental Theorem of Line Integrals says∫
C

F • Tds =

∫ b

a

5f • r′(t) dt = f(r(b))− f(r(a))

where r(t) with a ≤ t ≤ b is a parametrization of C. This is called path independence. It
follows that if C is a closed curve (loop) then∮

C

F • Tds = 0.

A vector field F is conservative if and only if 5× F = 0.

(We drop the assumption that F is conservative.) If S is a surface with boundary C (a
closed curve) then Stokes’ Theorem says that∮

C

F • T ds =

∫∫
S

(5× F ) •N dS.

Notice that if we change the surface S with another surface S ′ that has the same boundary
C the result is unchanged. If S is a closed surface then C is a point and we get that the flux
of the curl of F is zero though any closed surface.

In the plane Stokes’s Theorem is becomes Green’s Theorem.

If V is a connected region in with boundary S then the Divergence Theorem says if
F has continuous derivatives in V then∫∫

S

F •N dS =

∫∫∫
V

5 • F dV.



These three theorems are generalizations of the Fundamental Theorem of Calcu-
lus, which state that we can evaluate

∫ b
a
f(x) dx from only knowing the anti-derivative on

the boundary of the interval [a, b];
∫ b
a
f(x) dx = F (b) − F (a) where F ′(x) = f(x). They

can greatly simplify many calculations but also, with more experience, yield deep physical
insights.

Example 4. Let V be the cube [0, 2]3 and let S be its boundary surface with outward
normal. Let F = 〈x2, y3, ez − 1〉. Find the flux of F through S.

Solution. By the divergence theorem∫∫
S

F •NdS =

∫∫∫
V

5 • FdV.

Now 5 • F = x2 + y3 + ez − 1. Thus

flux =

∫ 2

0

∫ 2

0

∫ 2

0

x2 + y3 + ez − 1 dx dy dz = 80 + 4(e2 − 1).

To do this directly we’d need to integrate over each of the 6 faces separately. Yuck!

Example 5. Let F = 〈3x2, 2y, 2z〉. Find the work done in pushing a particle along the
helix 〈cosπt, sin πt, t3〉 from (1,0,0) to (1,0,8).

Solution I. Since 5× F = 〈0, 0, 0〉 there is a potential function f with 5f = F . In fact
it is easy to see that f(x, y, z) = x3 + y2 + z2 works. Thus,∫

Helix
F • T ds = f(1, 0, 8)− f(1, 0, 0) = 64.

Solution II. If we wanted to do this directly we would have∫
Helix

F • T ds =

∫ 2

0

〈
3 cos2 πt, 2 sinπt, 2t3

〉
•
〈
−π sin πt, π cos πt, 3t2

〉
dt =

∫ 2

0

−3π cos2 πt sin πt+ 2π cosπt sin πt+ 6t5 dt = 0 + 0 + 64.

Example 6. Let G be a vector field with all second partial derivatives continuous. Let
S be a closed surface with outward normal. What is the flux of the curl of G out through
S?

Solution. Let V be the bounded region in R3 with boundary S. Then∫∫
S

5×GdS =

∫∫∫
V

5 • (5×G)dV =

∫∫∫
0 dV = 0.

Remember for any twice differentiable vector field G, div curl G = 0.

Example 7. Let F = 〈x+ y + 3z, 2x− z, x− 2y + z〉. Let S be the surface of a bounded
region V in R3 which has volume 23. Find the flux of F out through S.



Solution. Div F = 1+0+1 = 2. Thus

flux =

∫∫
S

F •NdS =

∫∫∫
V

2dV = 2× 23 = 46.

Example 8. Let F = 〈M,N,P 〉 =
〈
x3y, xy2, sin ln

√
x+ yz + 7

〉
. Let S be the portion

of the cone z = 9 −
√
x2 + y2 above the xy-plane and below z = 9 with outward normal

vector. Find the flux of 5× F through S.
Solution. Let C be the circle of radius 3 in the xy-plane with center at the origin, oriented

counterclockwise. Then C is the boundary of S. By Stokes’ Theorem∫∫
S

5× F •NdS =

∮
C

F • Tds.

Let S∗ be the disk of radius 3 in the xy-plane with center at the origin with upward normal
vector. Notice the boundary of S∗ is just C. Thus by Stokes’ Theorem (or Green’s Theorem)∮

C

F • Tds =

∫∫
S∗
5× F • 〈0, 0, 1〉 dA =

∫∫
S∗
My −NxdA =

∫∫
S∗
x3 − y2dA =∫ 2π

0

∫ 3

0

(r3 cos3 θ − r2 sin2 θ) r dr dθ =

∫ 3

0

0− r3π dr = −81π/4.

Some Properties of Vector Fields
Let f be a scalar function. If all second partial derivatives are continuous then

5× (5f) = 0

Let F be a vector field with continuous second partial derivatives. Then

5 • (5× F ) = 0.

As we stated above if 5 × F = 0, that is F is conservative, then there exists a scalar
function f such that F = 5f . In many applications f is the potential energy (although
physics books will let U = −f and write F = −5 U). We developed a method for finding
f .

If G is a vector field with 5 • G = 0, that is if G is divergence free, then there exists
another vector field F such that G = 5×F . In this case F is called a vector potential field
for G. There is a method for finding F , but we have not covered this.

Example 9. A static electric force field is conservative and thus has a scalar potential
function. This is not true for a magnetic field, but it turns out they are divergence free and
so have vector potential field.



Appendix. Below is how I did the mass calculation for S in Example 2. This is pretty
tricky and you would not have to do something like this on a test.

Mass of S =

∫∫
S

h dS =

∫∫
U

h(x, y, x2 + 2y + 3)
√

1 + (zx)2 + (zy)2 dA =

∫ 2π

0

∫ 1

0

h(r cos θ, r sin θ, r2 cos2 θ + 2r sin θ + 3)
√

5 + 4r2 cos2 θ r dr dθ =∫ 2π

0

∫ 1

0

r cos θr sin θ(r2 cos2 θ + 2r sin θ + 3)
√

5 + 4r2 cos2 θ r dr dθ =

∫ 1

0

∫ 2π

0

r4 cos3 θ sin θ
√
∗+ 2r3 cos θ sin2 θ

√
∗+ 3r2 cos θ sin θ

√
∗ dθdr =∫ 1

0

∫ 2π

0

r2 cos θ sin θ(r2 cos2 θ + 3)
√
∗+ 2r3 cos θ sin2 θ

√
∗ dr dθ = 0.

To see this let

f(θ) = cos θ sin θE(cos θ) and g(θ) = cos θ sin2 θE(cos θ),

where E is any even integrable function. Check that g(θ + π) = −g(θ). Then∫ 2π

0

g(θ) dθ =

∫ π

0

g(θ) dθ+

∫ 2π

π

g(θ) dθ =

∫ π

0

g(θ) dθ+

∫ π

0

g(θ+π) dθ =

∫ π

0

g(θ) dθ−
∫ π

0

g(θ) dθ = 0.

Next check that f(θ + π) = f(θ) and f(π − θ) = −f(θ). Now∫ 2π

0

f(θ) dθ = 2

∫ π

0

f(θ) dθ = 2

(∫ π/2

0

f(θ) dθ +

∫ π

π/2

f(θ) dθ

)
.

But, letting φ = π − θ we have∫ π

π/2

f(θ) dθ = −
∫ 0

π/2

f(π − φ) dφ =

∫ π/2

0

f(π − φ) dφ = −
∫ π/2

0

f(φ) dφ,

and the result follows.


