3D Calculus Examples

- 1. Consider the solid paraboloid P given by $z = a^2 x^2 y^2$ and $z \ge 0$. Suppose the density is $\rho(x, y, z) = x^2 y^2 z$. Find the moment of inertia with respect to the z-axis. Answer: $\frac{a^{12}\pi}{960}$
- 2. Let C be the cube $[0,2]^3$. Let $\mathbf{F} = \langle x^2, y^3, e^z 1 \rangle$. Find the flux of \mathbf{F} out of C. Answer: $44 + 4e^2$
- 3. Let C be the circle of radius 4 with center (0, 0) in the xy-plane. Let $\mathbf{F} = \langle x^2 y, x y^2 \rangle$. Find the work done by \mathbf{F} in pushing a particle around C once counter clockwise. Answer: 32π
- 4. Consider the closed loop L in \mathbb{R}^3 given by $\mathbf{r}(t) = \langle \cos^2 t, 5 + 3\sin 5t, \cos t \sin^2 t \rangle$ for $0 \le t \le 2\pi$. Let $\mathbf{F} = \langle x^2 \ln x, y^3 + 2\sin y, e^{z^2 2} \rangle$. Find the work by by \mathbf{F} in pushing a particle around L once in the direction of increasing t.

Solution: Show $\nabla \times \mathbf{F} = \mathbf{0}$. Thus no net work is done.

5. Consider the loop L formed by the intersection of the plane x + z = 4 and the cylinder $z = x^2 + y^2$. Let $\mathbf{F} = \langle y, 2x + y, x - y \rangle$. Find the work done by \mathbf{F} in pushing a particle around C once, counterclockwise when viewed from above.

Answer. 0

Solution: $\nabla \times \mathbf{F} = \langle -1, -1, 1 \rangle$. The unit normal vector to the plane pointing up is $\mathbf{N} = \langle 1, 0, 1 \rangle / \sqrt{2}$. Thus $\nabla \times \mathbf{F} \cdot \mathbf{N} = 0$.

- 6. Let $\mathbf{F} = \langle 4x + y, y^2 + 3x \rangle$. Let C be the cardioid $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$. Find the work done by \mathbf{F} in moving a particle once around C counterclockwise. Answer. 3π
- 7. Consider the solid paraboloid P given by $z = a^2 x^2 y^2$ and $z \ge 0$. Derive formulas for the volume and surface areas. Answers. $\frac{\pi}{2}a^4 \& \frac{\pi}{6}\left(\left(\sqrt{4a^2+1}\right)^3 - 1\right)$
- Let F = (0, 0, z²). Let S be the upper hemisphere of the unit sphere centered at the origin of R³. Find the flux of F up through S. Answer. π/2
- 9. Let C be the portion of the helix

$$\mathbf{r}(t) = \langle \cos 2\pi t, \sin 2\pi t, t \rangle$$

for $0 \le t \le 1$. Let

$$\mathbf{F} = \langle z + 4yz + y\cos(xy), 4xz + x\cos(xy), x + 4xy \rangle.$$

Find the work done by \mathbf{F} in pushing a particle along C in the direction of increasing t. Answer. 1

- 10. Let $\mathbf{F} = \langle x + y, y + z, x + z \rangle$. Let R be the cylindrical solid bounded by z = 0, z = 5, and $x^2 + y^2 = 9$. Find the flux of \mathbf{F} out through the boundary of R. Answer. 135π
- 11. Consider a solid cylinder of height h and radius a with density proportional to the distance from the base.
 - a. Find the total mass.
 - b. Find the center of mass.
 - c. Find moment of rotational inertia with respect to its axis.

Answers. $\frac{1}{2}ka^2h^2\pi$, (0, 0, 2h/3), $\frac{1}{4}a^4h^2\pi$.

12. Let S be the closed surface formed from the portion of the paraboloid $z = 9 - x^2 - y^2$ above the xy-plane and the disk of radius 3 center (0,0) in the xy-plane. Let $\mathbf{F} = \langle 7xy, z, 4xy + y^2 \rangle$. Find the flux of \mathbf{F} out through S.

Answer. 0

13. Let C be the boundary of the rectangle in the z = y plane determined by $0 \le x \le 1$ and $0 \le y \le 3$. Let $\mathbf{F} = \langle x^2, 4xy^3, xy^2 \rangle$. Find the work done by \mathbf{F} in pushing a particle around C counterclockwise when viewed from above.

Answer. 90

14. Let C be the triangle in \mathbb{R}^3 with vertices (a, 0, 0), (0, a, 0) and (0, 0, a) oriented clockwise when viewed from above. Evaluate the line integral

$$\int_C y^2 \, dx + z^2 \, \, dy + x^2 \, dz$$

Answer. a^3

15. Let $\mathbf{F} = \langle 2xyz, x^2z, x^2y \rangle$. Show that \mathbf{F} is conservative and find a potential function for \mathbf{F} . If C is any path from (0, 0, 0) to (1, 2, 3) evaluate $\int_C \mathbf{F} \cdot \mathbf{T} ds$.

Answer. 6