The Theory of Second Order Linear Differential
Equations*
Michael C. Sullivan
Math Department
Southern Illinois University

These notes are intended as a supplement to sections 3.2 and 3.3
of the textbook FElementary Differential Equation and Boundary Value
Problems, by Boyce and DiPrima, 6th edition.

1. A MOTIVATING EXAMPLE

Consider the equation y”+y = 0. We can see by inspection or by the
methods of section 3.4 that y; = sinx and 3y = cos x are solutions. It is
easily checked that y = C; sinz+ (5 cos x is a solution for all choices of
the constants C; and Cy. Furthermore, as the reader can check, for all
initial conditions of the from y(z¢) = o and y'(z) = 3, we can find C4
and Cs such that y = Cy sinx + Cs cos z satifies these conditions. (Do
this!) We will see later that we do indeed have all possible solutions to
y// +y=0.

Now consider the figure below. It is a plane, but the axes are labels
C7 and Cy. To each point in this plane we associate the function
y = Cysinz + Cycosz. In this way this solution set of ¥ +y = 0
becomes a vector space. We shall not give a formal definition of a vector
space. But we note that, geometrically, adding pairs of solutions to our
differential equation is just like adding vectors in this plane. Thus, the
tools of linear algebra come into play.

Cy
9 (3,2) >y =3sinz +2cosz

i
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2. REVIEW OF 2X2 SYSTEMS OF EQUATIONS

The determinate of a 2 x 2 matrix is

det [ “ b} = ad — bc.
c d
Determinates are often denoted by replacing the brackets with straight
lines:
a b a b
det[c d} = d‘—ad—bc.
Now, consider a 2 x 2 system of linear equations,
ar +by = e
ce+dy = f (1)

This can be rewritten in matrix notation as,

a b x| | e
c d vyl |
We shall separate our discussion into two cases.

CASE I: When e = f = 0, we say the system of equations (1) is
homogeneous. The pair equations can be thought of as representing
two lines passing through the origin. Hence, if they have the same
slope there are infinitely many points where they intersect. But if they
have different slopes the only intersection point is the origin. It is easy
to show that the slopes are the same if and only if the determinate of

[ (Z Z ] is zero. (Show this, and note that this result does not depend

on e and f being zero.) Thus, we can state the following:

a b| 0 There are infinitely many
c d| solutions to equation (1).

and

a b

c d ‘ 70 z =y =0, to equation (1).

{ There is only one solution, }

Case II: If either e or f is not zero, then we say the system of equa-
tions (1) is nonhomogeneous. Now the lines given by the two equations
are not both going through the origin. If the slopes are different there
is still a unique point of intersection. But if the slopes are the same
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either the lines coincide as before giving infinitely many solutions, or
they are disjoint parallel lines, and have no points in common. Thus,
we can write:

‘ab

There are infinitely many solutions or
c d|” 0

there are no solutions to equation (1).

and

IS

The diligent reader will check the conclusions we have reached for
several examples and draw the relevant graphs.

2 ‘ #0 <= {There is only one solution to (1).}

o

3. LINEAR INDEPENDENCE AND THE WRONSKIAN

We now define some tools from linear algebra that will be useful in
our study of the solutions of second order linear differential equations.

Definition 1 (Linear Independence). Two functions, f(z) and g(z),
defined on the same open interval I are linearly independent if neither
is a nonzero multiple of the other. This is the same as saying it is
impossible to find real numbers, C'; and C5, not both zero, such that

Cif(x) + Cog(r) =0

for all x € I. If it is possible two find two such numbers, not both zero,
then we say f and g are linearly dependent. Again, this means f is a
multiple of g or vice versa.

Example: Show that z and z? are linearly independent over the
real line.

Example: Show that |z| and 2z are linearly dependent on I = (2, 3)
but are linearly independent on I = (—1,1).

Definition 2 (Wronskian). Let f(z) and g(x) be differentiable func-
tions. Then their Wronskian at z is defined to be the function

W(2) = W(f,0)(x) = f(@)g'(@) = ['(2)g(x) = ‘ RN ‘

Example: Show that W (sinz,cosz) = —1 for all z.
Example: Show that W (e™*, e"2%) is never zero if | # ro.
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Theorem 1 (3.3.1, page 140). Let f and g be differentiable functions
defined on an open interval I. If f and g are linearly dependent then
W(f,g)(x) =0 for all x € I. It follows that if the Wronskian is not
zero for at least one point in I then f and g are not linearly dependent,
and are thus linearly independent.

Check the theorem for the examples above.

Proof. Suppose f and g are linearly dependent on I. Then there exist
constants C7 and (5, not both zero, such that

Cif(z) + Cog(x) =0, forallze I.
Taking the derivative gives
Cif'(z) + Cag'(z) =0, forallz e l.

But, we can view this as a solution to the 2 X 2 system

o le]=10])

Since the system is homogeneous and C; and C5 are not both zero,

it follows that the determinate of [ ! ,(x) g/(:c) } is zero. Thus, the
f(z) ¢'(x)

Wronskian is always zero in [.

Remark: Problem 28 in section 3.3 gives an example of a pair of
differentiable linearly independent functions for which the Wronskian
is always zero. Why does this not contradict Theorem 17 However, we
will see later that if f and ¢ are solutions to y” + py’ + gy = 0 then
they are linearly independent if and only if their Wronskian is never
zero in the relevant interval.

4. THE THEORY

We now begin our discussion of differential equations.

Theorem 2 (Existence and Uniqueness: 3.2.1 page 131). Let p(x),
q(z), and ¢(x) be continuous functions on an open interval I. Then
the initial value problem

v +py +qy =0 with y(zo) = a and y'(xy) = 5,
has a unique solution for y(x) on I, provided of course that xo € I.

Example: Consider the initial value problem,

t 1
TV tru=¢ y(0)=1&y(0)=2

yll +
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A unique solution is guaranteed to exist on (—1,1). If we had as
initial conditions y(1.5) = 7 & 3/(1.5) = 23 then a unique solution
is guaranteed to exist on (1,2). If we had as initial conditions y(1 —
13.5) = 6 & 3'(—13.5) = 10?3 then a unique solution is guaranteed to
exist on (—oo, —1).

Remark: The proof is very difficult and we will not do it. However,
you should understand the statement of the theorem and its many
implications and applications. It is the most important theorem in
Chapter 3. We will, in what follows, we prove some special cases of
this theorem and we will use it to gain an understanding of the structure
of the solution set of a second order linear differential equation. The
general idea is this. For any second order linear homogeneous equation
(y" +py' +qy = 0) there exists a pair of linearly independent solutions,
f and g. Any initial value problem (y(a) = b,y'(a) = ¢) can be solved
by a unique linear combination of f and g.

In sections 3.6 and 3.7 we willshow that a solution to a nonhomoge-
neous problem can be found by adding an extra term to a solution of
the corresponding homogeneous problem.

Theorem 3 (Linear Superposition: 3.2.2 page 132). If y = f(z) and
y = g(z) are solutions of the homogeneous differential equation, y" +
py' + qy = 0, then so is any linear combination of f(x) and g(x).

Proof. The proof is very easy. Do it. You may be tested on this. This
concept will come up over and over again, both in this course and
others. 0

Theorem 4. The unique solution of the initial value problem ay" +
by' + cy = 0 with y(xo) = « and y'(x9) = B has a solution given by
some linear combination of one of the these three pairs of functions,
{ern® em®} {e™ ze™} and {€'* sin Az, e?” cos Az }.

Proof. We have shown that we can always find two linearly independent
solutions to ay” + by’ + cy = 0 and that these will be one of the three
pairs listed in the theorem. Call them f and g. So, the only question
is can we solve the system

f(zo)  g(wo) Ci | _ |«

f'(z0) ¢'(zo) | [ Co Bl
The answer depends on the Wronskian. We know that, because of
linear independence, the Wronskian is not always zero. But what if it
is zero at x = xy? That would be a problem. However, the reader can

check that for the three possible solution pairs {e™*,e™*}, {e"®, ze™}
and {e’? sin yx, e"* cos yz } the Wronskian is in fact always nonzero. O



Can we push this idea further?

Theorem 5. Let y = f(x) and y = g(x) be linearly independent solu-
tions of y" + p(x)y' + q(x)y = 0, where p and q are continuous on an
open interval I. Then the Wronskian W (f, g) is never zero in I.

Remark: This means that if we can find a pair (f and g) of linearly
independent solutions to " + p(x)y' + g¢(x)y = 0 then we can solve
any initial value problem y(z¢) = « and y'(zo) = [ with a linear
combination of f and g. We record this as Theorem 6 below.

FEasy Proof. Suppose that there is a point zy € I where W (f, g)(zo) =
0. Then consider the initial value problem with y(zo) = y'(zo) = 0.
This leads to the system of equations

f(@o)  g(wo) Ci|_ |0
f'(xo) ¢'(z0) | | C2 0]°
But if the Wronskian at zy, which is just the determinate of the matrix

above, is zero, then there are infinitely many values of C; and Cy that
work. But this contradicts the uniqueness claim of Theorem 2. O

Your text has a much longer proof. It makes use of Abel’s Formula
which is useful in its own right. You should know Abel’s Formula, but
the proof below is optional reading.

Book’s Proof. STEP 1. We will show that the Wronskian is given by
the equation

W (f, 9)(z) = Cexp(~ / p(z) d),

where C' is a constant. (This is Abel’s Formula: 3.3.2 page 141.) It
follows that W is either always zero or never zero.
We know that

f'+pf +qf =0,
and
9" +pg +q9=0.
Multiply the first equation by g and the second one by f. Thus,
9f" +pgf +aqg9f =0,
and
f9" +pfgd +afg=0.
Subtract first equation from the second and simplify to get

(fg" —gf")+p(fg' — f'g)=0.
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Notice that W = fg¢' — f'g and that W' = f¢" — ¢gf”. Thus W must
satisfy the differential equation
W'+ pW = 0.

But this we can solve, showing that

W(z) = Cexp(- / p(z) dz),

for some C. Next we must show that C' is not zero.
STEP 2. Suppose that W is always zero in I. Let zy, be any point
in I. Then the system of equations

C1f (o) + Cag(w0) = 0,

lel(ﬂ?()) + ngl(l'()) =0,
has a nontrivial solutions for C; and C, (i.e., they are not both zero).
Let h(z) = C1f(z) + Cag(x). Then y = h(z) is a solution to the initial
value problem y"+py'+qy = 0 with y(z¢) = 0 and y'(z¢) = 0. However,
it is clear that y(z) = 0 (the zero function) solves this system. Thus,
by the uniqueness part of Theorem 2, h(x) is the zero function. This,
in turn, means that Cy f(z) + Cayg(z) = 0 for all z in . Thus, f and g
are linearly dependent on I, contradicting our hypotheses. Thus, W is
never zero. ]

Theorem 6. Suppose f and g are linearly independent solutions of

Yy +py +qy=0.

Then any initial value problem, y(zo) = a and y'(x¢) = B, is solved by
a linear combination of f and g.

Proof. In light of Theorem 5 this is just the same as the proof of The-
orem 4. (|

Theorem 7. If f and g are linearly independent solutions of

y' +py +qy =0,
then every other solution can be written as a linear combination of f
and g.

Proof. Let h be a solution. Let xy € I. Let o = h(xo) and 8 = h'(x).
Consider the system of equations

C1f(zo) + Cag(z0) =
C1f'(wo) + Cag' (w0) = B

Since the Wronskian of f and g is never zero it is not zero at x = xy.
This means we can find unique values of C; and C5 that solve the
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2 x 2 system. By the uniqueness part of Theorem 2 it follows that
h(z) = C1f(x) + Cag(z) for all x € I. O

Theorem 8. Every differential equation of the form y" +py' +qy = 0,
with p and q continuous on I, has two linearly independent solutions.

Proof. Let g be in I. Consider the two initial value problems
V' +py +qy=0 with y(zg) =1 and y'(xy) =0
and
y"+py +qy =0 with y(zg) =0 and y'(z0) =1.

Let f be a solution of the first and g of the second. Their Wronskian
at £ = g is 1 (check this). Thus, f and g are linearly independent. [

Conclusions: So, by using suitable initial values we can show that
there exist a pair of linearly independent solutions to any second order
linear homogeneous differential equation. Except for the case of con-
stant coefficients and a few other special cases discussed in the text we
do not have a procedure for finding them. In section 3.5 (page 158) we
did see that if you know one solution, y;(x), then you can find another
of the form ys(z) = v(z)y,(x). This second solution can be shown to
be linearly independent of the first.

5. IMPLICATIONS AND APPLICATIONS

5.1. The interlacing theorem.

Theorem 9 (#33 in 3.4.). Suppose that f and g are lineary indepen-

dent solutions of y"+py'+qy = 0. Suppose p(z) and q(x) are continuous

on I. Suppose a and b are in I, a < b, and f(a) = f(b) = 0. Then

there is a point c in between a and b, a < ¢ < b, such that g(c) = 0.
Thus, f and g are “interlaced”.

Examples: Consider y” + y = 0. The functions sinz and cosz are
a linearly independent pair of solutions. In between each pair of zeros
of sinz, cos z has a zero, and vica verse. Thus the graphs of these two
functions are said to be interlaced. This would work for any solution
pair of the form {e"®sin Az, " cos Az}. [Pick numbers for vz ans A,
and graph these two functions to see this.]

Proof. 1 will do in class. You may be tested on this. O
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5.2. Impossible pairs Theorems. Example: Suppose t and 2 solve
y"+p(t)y' +q(t)y = 0. Show that p is discontinuous at zero. W (t,t?) =
t? = 0 at t = 0. Impossible if p(t) is continuous at ¢t = 0, by Abel’s
Formula. If fact we can “back solve” and find p = —1/¢ and ¢ = 1/¢%.
(I will do this in class.)

In the theorems below assume p and ¢ are continuous on an interval 1
and that f and ¢ are linearly independent solutions to y"+py'+qy = 0.

Theorem 10 (#24, section 3.3). The functions f and g cannot both
be zero at a point in I.

Proof. Homework! O

Theorem 11 (#25, section 3.3). The functions f and g cannot have
a max or min at the same point in 1.

Proof. Homework! O

Theorem 12 (#26, section 3.3). The functions f and g cannot have
an inflection point at the same point in I, unless p and q are both zero
at that point.

Proof. 1T will do this one in class. O



