Lecture Notes for Ch 10
Fourier Series and Partial Differential Equations

Part I.
Outline

Page 2. Review even and odd functions. Very important.

Page 4. Definition of Fourier series and a Theorem.

Pages 5-8. Verification of parts of the Theorem.

Pages 9-10. Fourier series of a Square Wave.

Pages 11-12. Fourier series of a Triangle Wave.
Review of Even and Odd Functions

Even: \(f(-x) = f(x) \)
Odd: \(f(-x) = -f(x) \).

Even Examples: \(5x^6 - 3x^4 + 2, \frac{x^4+1}{x^2+1}, |x|, \cos(x), \cos(x^5), \sin^4(x). \)

Odd Examples: \(x^{1/3}, x^7 - 6x^3, |x|, \sin(x), \sin^5(x^7). \)

Neither: \(x^2 + x, x + \cos(x), \frac{1}{x+1}. \)

Three Even Functions

Three Odd Functions

Problem: Let \(f(x) \) be an odd function and suppose it is defined at \(x = 0 \). What is \(f(0) \)? Prove this!

Problem: Find a function with domain the whole real line that is both even and odd. (There is only one correct answer.)

Fact: If \(f(x) \) is even, then \(\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx. \)

Fact: If \(f(x) \) is odd, then \(\int_{-a}^{a} f(x) \, dx = 0. \) Draw pictures to see intuitively why these two facts hold.

Fact: If \(f(x) \) is even and differentiable, then \(f'(x) \) is odd, and vice versa. This can be proved with the Chain Rule. Suppose \(f(x) \) is even and differentiable. Then \((f(-x))' = f'(-x)(-1). \) But \(f(-x) = f(x), \) so \((f(-x))' = (f(x))' = f'(x). \) Thus, \(f'(-x)(-1) = f'(x), \) or \(f'(-x) = -f'(x). \) You can also draw pictures of tangent lines to curves to see this intuitively.

Exercises: Suppose that \(f(x) \) and \(g(x) \) are even and the \(h(x) \) and \(k(x) \) are odd. Then show that:

(a) \(f(x)g(x) \) is even. (f) \(f(g(x)) \) is even.
(b) \(f(x)h(x) \) is odd. (g) \(f(h(x)) \) is even.
(c) \(h(x)k(x) \) is even. (h) \(h(f(x)) \) is even.
(d) \(f(x) + g(x) \) is even. (i) \(h(k(x)) \) is odd.
(e) \(h(x) + k(x) \) is odd. (j) \(f(x) + h(x) \) need not be even or odd.

Example: Let \(p(x) = f(x)h(x). \) Then \(p(-x) = f(-x)h(-x) = f(x)(-h(x)) = -f(x)h(x) = -p(x). \)
Hence we have an odd function.

You may be tested on this!
Some Damn Useful Integral Formulas

1. \[\int_{-L}^{L} \cos \left(\frac{m\pi x}{L}\right) \cos \left(\frac{n\pi x}{L}\right) \, dx = \begin{cases} 0 & \text{for } m \neq n, \\ L & \text{for } m = n. \end{cases} \]

2. \[\int_{-L}^{L} \cos \left(\frac{m\pi x}{L}\right) \sin \left(\frac{n\pi x}{L}\right) \, dx = 0, \] for all integers \(m \) and \(n \)

3. \[\int_{-L}^{L} \sin \left(\frac{m\pi x}{L}\right) \sin \left(\frac{n\pi x}{L}\right) \, dx = \begin{cases} 0 & \text{for } m \neq n, \\ L & \text{for } m = n. \end{cases} \]

Below and to the left are the overlaid plots of \(\cos 4\pi x \) and \(\cos 2\pi x \). Below and to the right is the graph of their product. Study this. Make some similar plots on your own until the formulas above make sense.

We will prove only a special case of \#1. Let \(L = \pi \), \(m = 3 \) and \(n = 2 \). The proof uses the trig identities

\[\cos(\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi \]

and its corollary

\[\cos(\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi \]

Thus,

\[\cos \theta \cos \phi = \frac{1}{2} (\cos(\theta + \phi) + \cos(\theta - \phi)). \]

Applying this to our case gives

\[\cos 3x \cos 2x = \frac{1}{2} (\cos 5x + \cos x). \]

Thus,

\[\int_{-\pi}^{\pi} \cos 3x \cos 2x \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos 5x + \cos x \, dx = 0 + 0 = 0. \]

Let’s consider one more special case: \(L = \pi \), \(m = n = 2 \). Then

\[\int_{-\pi}^{\pi} \cos^2 2x \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos 4x + \cos 0 \, dx = \frac{0 + 2\pi}{2} = \pi. \]

From these ideas you should be able to derive the three integrals formulas. If you have had linear algebra, you might notice that the integral of a product of two functions is a kind of inner product and so the cosine and sine functions used above are mutually orthogonal.
Definition of Fourier Series

Let \(f(x) \) be a piecewise continuous periodic function with period \(2L \). The Fourier Series of \(f(x) \) is,

\[
\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \left(\frac{n\pi x}{L} \right) + \sum_{n=1}^{\infty} b_n \sin \left(\frac{n\pi x}{L} \right),
\]

where

\[
a_n = \frac{1}{L} \int_{-L}^{L} \cos \left(\frac{n\pi x}{L} \right) f(x) \, dx, \quad n = 0, 1, 2, 3, \ldots,
\]

and

\[
b_n = \frac{1}{L} \int_{-L}^{L} \sin \left(\frac{n\pi x}{L} \right) f(x) \, dx, \quad n = 1, 2, 3, \ldots.
\]

Theorem. The Fourier series of \(f(x) \) converges to \(f(x) \) if \(f \) is continuous at \(x \). If \(f \) is discontinuous at \(x \) then this must be a jump discontinuity. Let

\[
f(x^+) = \lim_{c \to x^+} f(c) \quad \text{and} \quad f(x^-) = \lim_{c \to x^-} f(c).
\]

Then the Fourier series of \(f \) converges to the average of these two limits,

\[
\frac{f(x^+) + f(x^-)}{2}.
\]

If \(f \) is an even function then \(b_n = 0 \), for \(n = 1, 2, 3, \ldots \).

If \(f \) is an odd function then \(a_n = 0 \), for \(n = 0, 1, 2, 3, \ldots \).

In all cases \(a_0/2 \) is the average value of \(f(x) \) over one period.

We will verify parts of this theorem. The full proof is covered in Math 407.

1 Technical note: It is also required that \(f(x) \) is bounded and that in each period of \(f(x) \) there are only finitely many extrema.
We verify the formula for a_0 and show it is the average value of $f(x)$.

Let $c_n = \cos\left(\frac{n\pi x}{L}\right)$ and $s_n = \sin\left(\frac{n\pi x}{L}\right)$.

Suppose

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n c_n + \sum_{n=1}^{\infty} b_n s_n.$$

We will show that

$$a_0 = \frac{1}{L} \int_{-L}^{L} \cos(0) f(x) \, dx.$$

$$\frac{1}{L} \int_{-L}^{L} \cos(0) f(x) \, dx = \frac{1}{L} \int_{-L}^{L} 1 \cdot f(x) \, dx$$

$$= \frac{1}{L} \int_{-L}^{L} \left(\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n c_n + \sum_{n=1}^{\infty} b_n s_n \right) \, dx$$

$$= \frac{1}{L} \int_{-L}^{L} \frac{a_0}{2} \, dx + \frac{1}{L} \sum_{n=1}^{\infty} a_n \int_{-L}^{L} c_n \, dx + \frac{1}{L} \sum_{n=1}^{\infty} b_n \int_{-L}^{L} s_n \, dx$$

$$= a_0 + \frac{1}{L} \sum_{n=1}^{\infty} a_n \cdot 0 + \frac{1}{L} \sum_{n=1}^{\infty} b_n \cdot 0 = a_0$$

since,

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \, dx = \frac{L}{n\pi} \sin\left(\frac{n\pi x}{L}\right) \bigg|_{-L}^{L} = 0 - 0 = 0,$$

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \, dx = -\frac{L}{n\pi} \cos\left(\frac{n\pi x}{L}\right) \bigg|_{-L}^{L} = -\frac{L}{n\pi} (\cos(n\pi) - \cos(-n\pi)) = 0,$$

and

$$\frac{1}{L} \int_{-L}^{L} \frac{a_0}{2} \, dx = \frac{a_0}{2L} \int_{-L}^{L} 1 \, dx = \frac{a_0}{2L} \cdot 2L = a_0.$$

Finally, recall that the average value of $f(x)$ over a cycle is $\frac{1}{2L} \int_{-L}^{L} f(x) \, dx$. Thus, $a_0/2$ is the average value of $f(x)$ over a cycle.
We check the formula for a_7, but the method is the same for all $n \geq 1$.

\[
a_7 = \frac{1}{L} \int_{-L}^{L} \cos \left(\frac{7\pi x}{L} \right) f(x) \, dx
\]

\[= \frac{a_0}{2L} \int_{-L}^{L} c_7 \, dx + \frac{1}{L} \sum_{n=1}^{\infty} a_n \int_{-L}^{L} c_n c_7 \, dx + \frac{1}{L} \sum_{n=1}^{\infty} b_n \int_{-L}^{L} s_n c_7 \, dx\]

\[= \frac{a_0}{2L} \cdot 0 + \frac{1}{L}(0 + 0 + 0 + 0 + 0 + a_7 L + 0 + 0 + \cdots) + \frac{1}{L}(0 + 0 + 0 + \cdots)
\]

\[= a_7.
\]

Next we check b_4.

\[
b_4 = \frac{1}{L} \int_{-L}^{L} \sin \left(\frac{4\pi x}{L} \right) f(x) \, dx
\]

\[= \frac{a_0}{2L} \int_{-L}^{L} s_4 \, dx + \frac{1}{L} \sum_{n=1}^{\infty} a_n \int_{-L}^{L} c_n s_4 \, dx + \frac{1}{L} \sum_{n=1}^{\infty} b_n \int_{-L}^{L} s_n s_4 \, dx\]

\[= \frac{a_0}{2L} \cdot 0 + \frac{1}{L}(0 + 0 + 0 + \cdots) + \frac{1}{L}(0 + 0 + b_4 L + 0 + 0 + \cdots)
\]

\[= b_4.
\]
Even and Odd Properties

If $f(x)$ is an odd function then

$$a_n = \frac{1}{L} \int_{-L}^{L} \cos \left(\frac{n\pi x}{L} \right) f(x) \, dx = 0,$$

since the product of an even function with an odd function is odd.

If $f(x)$ is an even function then

$$b_n = \frac{1}{L} \int_{-L}^{L} \sin \left(\frac{n\pi x}{L} \right) f(x) \, dx = 0,$$

since the product of an odd function with an even function is odd.
An Example: The Square Wave

Let

\[f(x) = \begin{cases}
-1 & \text{for } -\pi < x < 0 \\
1 & \text{for } 0 < x < \pi,
\end{cases} \]

with \(f(x + 2\pi) = f(x) \) for all \(x \).

Problem. Find the Fourier series of \(f(x) \).

Solution. Since \(f(x) \) is odd, \(a_n = 0 \) for \(n = 0, 1, 2, \ldots \).

Next,

\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) f(x) \, dx = \frac{2}{\pi} \int_{0}^{\pi} \sin(nx) \cdot 1 \, dx = \frac{-2}{n\pi} (\cos(n\pi) - \cos(0)) = \begin{cases}
0 & \text{for } n \text{ even} \\
\frac{4}{n\pi} & \text{for } n \text{ odd}
\end{cases} \]

Thus,

\[f(x) = \sum_{k=1}^{\infty} \frac{4}{(2k-1)\pi} \sin((2k-1)x) = \frac{4}{\pi} \sin x + \frac{4}{3\pi} \sin 3x + \frac{4}{5\pi} \sin 5x + \cdots. \]

Recall that using \((2k-1) \) is a way to generate only odd numbers.

On the next page we plot a few partial sums.

Let \(f_N(x) = \sum_{k=1}^{N} \frac{4}{(2k-1)\pi} \sin((2k-1)x) \).
Plots of $f_N(x)$ for $N = 1, 2, 3, 4, 10, 100$

$N = 1$

$N = 2$

$N = 3$

$N = 4$

$N = 10$

$N = 100$
Another Example! A Triangle Wave

Problem: Find the Fourier series of the wave depicted below.

Solution: First note that since the period is 2, $L = 1$. We can see that for $0 < x < 1$, $f(x) = 1 - x$. Since this function is even, $b_n = 0$ for $n = 1, 2, 3, \ldots$. Also $\frac{a_0}{2} = \text{ave. value of } f(x) = \frac{1}{2}$. Thus, $a_0 = 1$.

Now,

\[
a_n = \frac{1}{1} \int_{-1}^{1} \cos(n\pi x) f(x) \, dx
\]

\[
= 2 \int_{0}^{1} \cos(n\pi x) (1 - x) \, dx
\]

\[
= \frac{2}{n\pi} \left[\sin(n\pi x) - x \sin(n\pi x) - \frac{1}{n\pi} \cos(n\pi x) \right]_{0}^{1}
\]

\[
= \frac{2}{n\pi} \left[\left(-\frac{1}{n\pi} \cos(n\pi) \right) - \left(-\frac{1}{n\pi} \right) \right]
\]

\[
= \begin{cases}
 0 & \text{for even } n \\
 \frac{4}{n^2\pi^2} & \text{for odd } n.
\end{cases}
\]

Thus,

\[
f(x) = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{4}{(2k-1)^2\pi^2} \cos((2k-1)\pi x).
\]

On the next page we plot a few partial sums.

Let $f_N(x) = \frac{1}{2} + \sum_{k=1}^{N} \frac{4}{(2k-1)^2\pi^2} \cos((2k-1)\pi x)$.
Plots of $f_N(x)$ for $N = 1, 2, 3, 30$