
Exact First Order Differential Equations

This Lecture covers material in Section 2.6. A first order differential
equations is exact if it can be written in the form

M(x, y) + N(x, y)
dy

dx
= 0,

where
∂M

∂y
=
∂N

∂x
.

Before showing how to solve these we need to review some multi-
variable calculus, especially the two-variable chain rule. This
will also help to motivate why equations of this form are important
in physics.

Let ψ(x, y) be a function of two variables. Then we can think of

z = ψ(x, y)

as a surface in three-dimensional space where z is the height above the
xy-plane. Now suppose the x and y are functions of t (time) so that
(x(t), y(t)) gives a curve in the xy-plane. Then z(t) = ψ(x(t), y(t))
gives a curve in three-dimensional space. Suppose we desire to know
the rate of change of z with respect to t. According to the two-
variable chain rule the answer is

dz

dt
=
∂ψ

∂x

dx

dt
+
∂ψ

∂y

dy

dt
. (∗)

This formula is derived in Calculus III. Here I will give an intuitive
motivation for why it works.

Suppose ψ(x, y) is just a plane. Then we have

z = ψ(x, y) = Ax + By + C

for some constants A, B and C. Here A is the slope of the plane with
respect to the x direction, B is the slope of the plane with respect
to the y direction and C is the intescept with the z-axis.
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We want to compute the change in z as t changes from t0 to t0+∆t.
Let ∆x = x(t0 + ∆t) − x(t0) and ∆y = y(t0 + ∆t) − y(t0) be the
changes in x and y, respectively. For convenience let x0 = x(t0) and
y0 = y(t0). Then the change in z is

∆z = ψ(x0 + ∆x, y0 + ∆y)− ψ(x0, y0) = A∆x + B∆y.

We divide both sides by ∆t to obtain

∆z

∆t
= A

∆x

∆t
+ B

∆y

∆t
.

Now we can find the derivative of z with respect to t by taking limits
as ∆t→ 0. This gives

dz

dt
= A

dx

dt
+ B

dy

dt
.

But notice that A = ∂xψ and B = ∂yψ. Thus we have

dz

dt
=
∂ψ

∂x

dx

dt
+
∂ψ

∂y

dy

dt

which is (∗).
This shows that the two-variable chain rule works for planes. In

general if ψ(x, y) is reasonably smooth it can be approximated near
each point by a tangent plane. It can be shown that this gives
the two-variable chain rule for any function of two variables that
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is smooth enough that its graph has a tangent plane at each point in
an open set containing the point of interest.

Now, let z = ψ(x, y) be a surface. But suppose z is some quantity
that is conserved, like energy. That is we now have

ψ(x, y) = C.

The slice of the surface through z = C is called level curve.
Example: Let z = ψ(x, y) = x2 + y2. Then the level curve for

z = 1 is a circle of radius 1 that floats one unit above the xy-plane.
Example: Let z = ψ(x, y) = 3x+ y− 3. The level curve for z = 2

is the line 3x + y − 3 = 2, or y = −3x + 5, that is it floating two
units above the xy-plane.

For now suppose y is a function of x (at least implicitly). As we
change x we cause y to change so that z = ψ(x, y) stays on the
same level curve. Since z is not changing we have dz/dx = 0. The
two-variable chain rule, using x for t, gives

0 =
dz

dx
=
ψ(x, y(x))

dx
=
∂ψ

∂x

dx

dx
+
∂ψ

∂y

dy

dx
.

Therefore,
∂ψ

∂x
+
∂ψ

∂y
y′ = 0.

If ψx and ψy are known functions what we have is a differential
equation in y.

We will be doing the inverse of this process. That is, given at
differential equation in the form

M(x, y) + N(x, y)
dy

dx
= 0

we will solve it for y(x) (or at least a relation between x and y)
by finding a surface ψ(x, y) such that M = ψx and N = ψy, and
then using an initial condition to find the desired level curve. In
many applications 〈M,N〉 is given as a force field and then ψ is a
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potential energy function. If energy is conserved, the dynamics are
restricted to a level curve of z = ψ(x, y).

Enough talk, let’s do some examples.
Example 1. Solve (2x + y) + (x + 2y)y′ = 0, with y(3) = 1.

Solution. We want to find a function ψ(x, y) such that

∂ψ

∂x
= 2x + y &

∂ψ

∂y
= x + 2y.

So, we integrate.

ψ =

∫
ψx dx =

∫
2x + y dx = x2 + xy + C1(y),

where C1(y) an arbitrary function of y. The idea is we are finding
the class of all functions whose partial derivative with respect to x
gives 2x + y.

But we also need for ψy = x + 2y. So, we integrate.

ψ =

∫
ψy dy =

∫
x + 2y dy = xy + y2 + C2(x),

where C2(x) can be any function of x.
We now have two classes of functions, each satisfying one of the

two conditions. If we could find a function that is in both class that
would do the trick. The answer is obvious. Let

ψ(x, y) = x2 + xy + y2.

This function is in both classes and thus satisfies both the needed
conditions. Now we consider the initial condition, y(3) = 1, that is,
x = 3 =⇒ y = 1. Then

ψ(3, 1) = 9 + 3 + 1 = 13.

Thus, the level curve we want is

x2 + xy + y2 = 13.
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We will leave as a relation. Below are plots of the surface z =
x2 + xy + y2 with the level 13 curve and a projection of this curve
into the xy-plane. �

Extra Credit. Prove that this curve x2 + xy + y2 = 13 is an
ellipse and find its focal points. You can do this by reviewing how to
rotate graphs with rotation matrices and the properties of ellipses.
Then rotate the graph 45o so that its major axis lies along the x-axis.

Example 2 (Not!). Solve (2x + 2y) + (x + 2y)y′ = 0, with
y(3) = 1. We integrate.

ψ =

∫
2x + 2y dx = x2 + 2xy + C1(y).

ψ =

∫
x + 2y dy = xy + y2 + C2(x).

Now look closely. Since 2xy 6= xy there is no function that meets
both conditions. The method fails! What this means in physical
terms is that the force field 〈2x + 2y, x + 2y〉 does not arise from a
potential function; in such a system energy is not conserved.

What we need is a quick test to see if ψ exists for a given equation
so that we don’t waste a lot of time barking up the wrong tree.

Theorem! Given two functions M(x, y) and N(x, y), there exists
a function ψ(x, y) such that

∂ψ

∂x
= M(x, y) &

∂ψ

∂y
= N(x, y),
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if and only if
∂M

∂y
=
∂N

∂x
,

in an open rectangle containing the point of interest.
Check this for the two examples above. This is Theorem 2.6.1 in

your textbook. Your textbook gives a proof, but another prove is
covered in Calculus III that uses Green’s Theorem. If you are a
Math major read both and compare them. However, one direction
is easy: if ψ exists, then ψxy = ψyx =⇒ My = Nx. This theorem
is the motivation for the definition we gave at the beginning of an
exact first order differential equation.

Example 3. Find the general solution to

y cosx + yexy + (sin x + xexy)y′ = 0.

Solution. Let M = y cosx + yexy and N = sinx + xexy. Then

My = cosx + exy + xyexy = Nx.

Thus, it is exact. We integrate.

ψ =

∫
M dx = y sinx + exy + C1(y)

and

ψ =

∫
N dy = y sinx + exy + C2(x).

We let ψ(x, y) = y sinx + exy. The general solution is then

y sinx + exy = C.

�

Example 4. Solve 4x3 + 4y3y′ = 0, with y(1) = 1.

Solution. It is exact since (4x3)y = 0 and (4y3)x = 0. Then

ψ =

∫
4x3 dx = x4 + C1(y)
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and

ψ =

∫
4y3 dy = y4 + C2(x).

We let ψ = x4 + y4. Since (1,1) is our initial condition we see that
our solution is

x4 + y4 = 2.

Below is a graph of this curve projected into the xy-plane. �

Example 5. Solve 4x4 + 4xy3y′ = 0, with y(1) = 1.

Solution. We check for exactness. (4x4)y = 0 while (4xy3)x = 4y3.
Thus it is not exact. But wait! Notice that this example is exactly
the same as Example 4, but that we have multiplied through by x.
So, if we now multiple through by 1

x we get

4x3 + 4y3y′ = 0.

Thus, the solution is same as in Example 4! �

Integrating factors.

This last example motivates the following idea. Suppose we have a
differential equation of the form

M + Ny′ = 0

which is not exact. Can we find a function µ(x, y) such that

µM + µNy′ = 0
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is exact?
The answer is, not always, but sometimes you can. When this

works we call µ an integrating factor. Finding such as µ can be
tricky. Here we show three special cases where an integrating factor
µ can be found. Each relies on an assumption about µ that can be
tested for.

Case 1. Suppose a suitable µ exists and that it is a function of x
only.

Case 2. Suppose a suitable µ exists and that it is a function of y
only.

Case 3. Suppose a suitable µ exists and that it can be written as
a function dependent only on the product xy.

In all cases we need to find µ such that

(µM)y = (µN)x

so that we have exactness. By the product rule this is equivalent to
requiring

µyM + µMy = µxN + µNx. (∗)

Case 1. If Case 1 holds then µy = 0 and we can think of µx as
µ′. Then (∗) becomes

µMy = µ′N + µNx

or
µ′

µ
=
My −Nx

N
.

If our assumption is correct then, since µ′/µ depends only on x, we
know that (My − Nx)/N depends only on x. Then the integrals
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below are well defined.∫
1

µ
dµ =

∫
My −Nx

N
dx

Thus,

µ = e
∫ My−Nx

N dx.

In fact, this gives us a test to determine when this method will work.

If
My−Nx

N depends only on x it follows that µ depends only on x.

Example 6. Find the general solution to y2 + x3 + xyy′ = 0.

Solution. Since (y2 + x3)y = 2y and (xy)x = y are not equal, this
equation is not exact. But

2y − y
xy

=
1

x

depends only on x. Thus we let

µ = e
∫ 1

x dx = x.

So, we multiply through by x to get

xy2 + x4 + x2yy′ = 0.

Let M = xy2 +x4 and N = x2y. Then My = 2xy = Nx, so we have
exactness. Now we find ψ as before.

ψ =

∫
M dx =

1

2
x2y2 +

1

5
x5 + C1(y)

ψ =

∫
N dy =

1

2
x2y2 + C2(x)

Thus, we let ψ = 1
2x

2y2 + 1
5x

5, so the general solution is

1

2
x2y2 +

1

5
x5 = C,

or if you prefer
5x2y2 + 2x5 = C.
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Solving for y gives

y = ±
√
C − 2x5

5x2
.

�

Case 2. This is so similar to Case 1 that we leave it to you to
develop the method and find the formula for µ(y).

Case 3. Recall equation (∗): µyM + µMy = µxN + µNx. Let
v = xy and remember we are assuming µ can be rewritten as a
function of v. Thus,

µy =
∂µ(v)

∂y
=
dµ

dv

∂v

∂y
=
dµ

dv
· x = xµ′,

and

µx =
∂µ(v)

∂x
=
dµ

dv

∂v

∂y
=
dµ

dv
· y = yµ′,

where µ′ means the derivative with respect to v. Now (∗) becomes

xµ′M + µMy = yµ′N + µNx,

which gives
µ′

µ
=

Nx −My

xM − yN
.

If the right hand side depends only on v = xy then the assumption
we are making is valid, and thus

µ = e
∫ Nx−My

xM−yN dv.

Perhaps an example would help.

Example 7. Solve

5x3 +
1

x
cosxy +

x4 + cosxy

y

dy

dx
= 0,
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with y(1) = π.

Solution. Let M = 5x3 + 1
x cosxy and N = x4+cosxy

y . Then

My = − sinxy & Nx =
4x3 − y sinxy

y

Thus, the given equation is not exact. We now search for an integra-
tion factor.

Case 1.
My −Nx

N
=
−4x3

y

x4+cosxy
y

=
−4x3

x4 + cosxy
No good!

Case 2.
Nx −My

M
=

4x3

y

5x4+cosxy
x

=
4x4

5x4y + y cosxy
Rats!!

Case 3.
Nx −My

xM − yN
=

4x3

y

5x4 + cosxy − (x4 + cosxy)
=

1

xy
! Eureka!!!

Let v = xy. Now,

µ(v) = e
∫ 1

v dv = eln |v|+C = C|v| = C|xy|;

we will use µ = xy
On ward! We multiply the original equation by xy to get

5x4y + y cosxy + (x5 + x cosxy)y′ = 0.

Let M = 5x4y + y cosxy and N = x5 + x cosxy. We double check
that it is in fact exact.

My = 5x4 + cosxy − xy sinxy = Nx.

Now the hunt is on for ψ!

ψ =

∫
M dx = x5y + sinxy + C1(y)
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and

ψ =

∫
N dy = x5y + sinxy + C2(x).

Thus, ψ = x5y+sinxy and the general solution is x5y+sinxy = C.
Since y(1) = π you can check that C = π. Thus, the solution is

x5y + sinxy = π.

�


