Homogeneous Second Order Differential Equations with Constant Coefficients: Continued

Complex roots.

The final case is what to do when the roots of the characteristic polynomial are complex. Recall that this means they will be of the form \(p \pm qi \) for real numbers \(p \) and \(q \) where \(i^2 = -1 \). (This assumes that the coefficients \(a \), \(b \) and \(c \) are real.) We will need to “review” some facts about complex functions that were censored from your calculus textbook.

But first, let’s look at a simple example, \(y'' + y = 0 \). We can rewrite this as \(y'' = -y \). So, we are seeking functions whose second derivatives are their own negatives. Two might come to mind, \(\sin x \) and \(\cos x \). In fact \(y = C_1 \sin x + C_2 \cos x \) gives all possible solutions, as we will show later.

The roots of the characteristic polynomial, \(r^2 + 1 = 0 \), are \(\pm i \). Notice that
\[
(e^{ix})'' = (ie^{ix})' = i^2 e^{ix} = -e^{ix}.
\]
But, what does it mean to raise \(e \) to a complex power? And, what does it mean to take a derivative of such a function? And, how are these functions connected to \(\sin x \) and \(\cos x \)?

Way back in Calculus II you studied Taylor series and you learned that
\[
e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots.
\]
Suppose \(z = a + ib \) is a complex number. Then we define
\[
e^z = 1 + z + \frac{z^2}{2} + \frac{z^3}{3!} + \frac{z^4}{4!} + \cdots.
\]
In courses on Complex Analysis (MATH 455 here) it is shown that this sequence converges for all complex numbers \(z \). The derivative can be defined via term-by-term differentiation. The following facts can also be proven:
\[
e^{a+ib} = e^a e^{ib}
\]
\[\frac{de^{\alpha ix}}{dx} = \alpha ie^{\alpha ix}, \]

for any real (or complex) number \(\alpha \). Now watch.

\[e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \frac{(ix)^7}{7!} + \frac{(ix)^8}{8!} + \cdots \]

\[= 1 + ix - \frac{x^2}{2!} - \frac{i x^3}{3!} + \frac{x^4}{4!} + \frac{i x^5}{5!} - \frac{x^6}{6!} - \frac{i x^7}{7!} + \frac{x^8}{8!} + \cdots \]

\[= \left(1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} + \cdots \right) + i \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \right) \]

\[= \cos x + i \sin x. \]

Now let’s get back to differential equations. Suppose we have \(ay'' + by' + cy = 0 \) and the roots of \(ar^2 + br + c \) are \(\alpha \pm i\beta \). Then the general solution is

\[y = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x} = (C_1 e^{i\beta x} + C_2 e^{-i\beta x}) e^{\alpha x} \]

\[= (C_1 \cos(\beta x) + i \sin(\beta x)) + C_2 (\cos(\beta x) - i \sin(\beta x))) e^{\alpha x} \]

\[= ((C_1 + C_2) \cos(\beta x) + i (C_1 - C_2) \sin(\beta x)) e^{\alpha x}. \]

We can rewrite this as

\[Ae^{\alpha x} \cos \beta x + Be^{\alpha x} \sin \beta x. \]

Theorem 3. The general solution to \(ay'' + by' + cy = 0 \) when the roots of the characteristic polynomial are \(\alpha \pm i\beta \) is

\[y = Ae^{\alpha x} \cos \beta x + Be^{\alpha x} \sin \beta x. \]

If \(y(x_0) = p \) and \(y'(x_0) = q \) then there is a unique solution for \(A \) and \(B \).

Proof. We have already derived the solution, but you can check it by directly substituting it in to the differential equation. Next, \(y(x_0) = p \) implies

\[A \cos \beta x_0 + B \sin \beta x_0 = pe^{-\alpha x_0}. \]
And \(y'(x_0) = q \) implies
\[A\alpha e^{\alpha x_0} \cos \beta x_0 - A\beta e^{\alpha x_0} \sin \beta x_0 + B\alpha e^{\alpha x_0} \sin \beta x_0 + B\beta e^{\alpha x_0} \cos \beta x_0 = q, \]
or
\[A(\alpha \cos \beta x_0 - \beta \sin \beta x_0) + B(\beta \cos \beta x_0 + \alpha \sin \beta x_0) = qe^{-\alpha x_0}. \]
So, again we have two equations and two unknowns and these can readily be solved for \(A \) and \(B \).

Example. Find the general solution to \(y'' - y' + 2y = 0 \). Then find the solution for the initial values \(y(0) = p, \ y'(0) = q \).

Solution. The characteristic polynomial \(r^2 - r + 2 \) has complex roots \(r = \frac{1}{2} \pm i\frac{\sqrt{7}}{2} \). Thus, the general solution is
\[y(x) = Ae^{\frac{1}{2}x} \cos \frac{\sqrt{7}}{2}x + Be^{\frac{1}{2}x} \sin \frac{\sqrt{7}}{2}x. \]

Now, \(y(0) = p \) implies \(A = p \) and \(y'(0) = q \) gives \(p/2 + B\sqrt{7}/2 = q \). Thus, \(B = \frac{2q-p}{\sqrt{7}} \) and we have
\[y(x) = pe^{\frac{1}{2}x} \cos \frac{\sqrt{7}}{2}x + \frac{2q-p}{\sqrt{7}}e^{\frac{1}{2}x} \sin \frac{\sqrt{7}}{2}x. \]