1. [20 points] Consider $y'' + 2 \sin(x)y' - 3y = 0; y(0) = 0, y'(0) = 2$. Find the first four terms of the power series of the solution.
2. [20 points] Consider $y'' + 2xy' - 3y = 0$. Find the general series solution; in particular find a recursive formula for the a_n's.
3. [20 points] Consider \((x^2 + 4)y'' + (x^3 + 1)y' - 4x^2y = 0\). DO NOT TRY TO SOLVE THIS. Merely find a lower bond on the radius of convergence of the series solution centered about \(c = 1\).
4. [20 points] Let $f(x)$ be a periodic function defined by the graph below.

a. Find a_0.

b. Find b_5.
5. [20 points] Consider the partial differential equation

\[U_{xx} - U_{xt} - U_t = 0. \]

Suppose that there is a solution of the form \(U(x,t) = X(x)T(t) \). Show that \(X(x) \) and \(T(t) \) must satisfy the ordinary differential equations below:

\[X'' + \sigma X' + \sigma X = 0 \]
\[T' + \sigma T = 0 \]
6. [20 bonus points] Let \(f(x) \) be an even periodic function with period \(2L \). (Thus, the \(b_n \) coefficients of its Fourier series are all zero.) If the function enjoys the additional symmetry \(f(x) = -f(L - x) \) it can be shown that for even values of \(n \), \(a_n = 0 \).

 a. Prove that \(a_0 = 0 \). Hints: Break up the integral \(\frac{2}{L} \int_0^L f(x) \, dx \) at \(L/2 \). The substitution \(u = L - x \) may be helpful at a certain point.

 b. Prove the general case, \(a_n = 0 \) for \(n \) even.