1. Suppose $y'(t) = f(y)$, where the graph of $f(y)$ is given below. Carefully draw the integral curves for this equation. What are the equilibrium solutions? What are their stability types? Describe the initial concavity of the solution curves. Assume $y(t)$ and t are nonnegative.

2. Match the differential equation with its direction field. (You get 4 points for each correct match, -2 for each wrong match.)
 1. $y' = y - 2$
 2. $y' = 2 - y$
 3. $y' = |y - 2|$
 4. $y' = y + x$
 5. $y' = x - y$
3. Find a continuous solution to the initial value problem, \(y' + p(t)y = g(t), \ y(0) = 1, \)
where
\[
p(t) = \begin{cases}
1 & t \leq 1 \\
0 & t > 1
\end{cases}
\]
and
\[
g(t) = \begin{cases}
0 & t \leq 2 \\
1 & t > 2
\end{cases}
\]
Sketch the graph of your solution, \(y(t) \), for \(0 \leq t \leq 5 \). Hint: \(y(5) = 3 + 1/e \).

4. Find the general solution of the differential equation \((x^2 + y)y' + 2xy = 6x\). Hint: check for exactness. (You need not solve for \(y \).)

5. A tank contains 200 gallons of salt water. The initial salinity is .5 lb/gal. The water is then pumped out of the tank, run through a filter, and pumped back in. The flow rate is 5 gallons a minute. The filter removes 30% of the salt. Also, water is evaporating at a rate of 1 gallon per minute. How much salt is left in the tank when the water has all evaporated? Assume the water in the tank is well mixed.