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Theorem 10-3. Let f be a function, with domain a < z < b, whose
derivative exists and is positive on that domain. Then f has an inverse,
g, and if y = f(z), then

g () =f'%7)’ for a <z <b. 2)

Or, in another notation, if y = f(z), then 2 = g(y) and
dx 1

dy ~ dy/dx

Proof. Because f’ is positive on Dy, f is one-to-one from its domain to
its range R;. Thus the rule

gly) == if and only if y = f(z), = € Dy
defines a function g whose domain D, is the range of f:
Dg =‘ Rf.

Figure 10-3 will help us to follow the remaining steps in the proof. Fix
y € D, and x = ¢g(y) € Dy. Since the domain of f is (by hypothesis)
the open interval a < z < b, there exists a positive number h such that
the closed interval [x — h, = -+ h] is in the domain of f. Let

y— T =f@—h), y+ks=f+h).

Then %k, and ko are positive numbers, so y is an inner point of the domain
of g, and that domain contains the closed interval [y — k, y -+ k], where

k = min (ky, kg). For each Ay 7 0, such that |Ay| < Fk, the inter-
mediate-value theorem applied to f shows that there exists Az % 0, such
that |Az| < h, and

fz + AZ) = y + Ay, gy + Ay) = T+ Az
To prove that ¢’(y) exists, we must show that the difference quotient

gy + Ay) — 9@)
Ay -

has a limit as Ay — 0. But this is easy, because

9(y) = =, g(y + Ay) = = + Az,
y = f(2), y + Ay = f(z + Az),
so that
gly +ay) —gly) _ _@+Ay) —z Az ®)
Ay i@+ Az) — f@) =+ o) — f(@)
and
Lim flx + AAQ') — f(z) = f'(x). (4a)
Az—0 x

By hypothesis, f'(z) # 0. Therefore, taking reciprocals in Eq. (4a) we get
s Az _ 1
oo J@ + Ax) — fz) — f'()

Since f is continuous on D; and g is continuous on Dy, Az — 0 when
Ay — 0, and conversely. Therefore, from Eqgs. (3) and (4b) we get

(4b)

gy +ay) —9@) _ Az ,
m, 2y = I T — @

or

o) — L. ED.
¢ = 70 Q

See Thms
18.4 & 20.5
in Ross text.



