Extreme Theorems
Section 18

Definition. A subset I of R with more than one point is

called an interval if whenever a,c € I and a < b < ¢ then
bel.

There are nine types of intervals:
(CL, b) (af7 OO) R = (—OO, OO)

la,b)  [a,00)
(a,b] (—o0,b)
la,b] (—o0,b]

It is easy though laborious to check these are the only
possible types of intervals. An interval I either has sup [/
infinity or finite and if finite I either contains sup / or it
does not. Likewise for inf I. If you check all the possibilities
you get the nine cases.

Intervals of the forms (a,b), (—o0,b), (a,00) and R are
said to be open intervals. A subset of R is open if it is
a union of open intervals. A subset of R is closed if it is
the complement of an open subset. (The empty set, (), is
defined to be open, which leads to the oddity that R and ()
are both open and closed!)

Example. The set {0} U {+|n € N} is closed since its
complement

(—00,0) U (U (ﬁ,%)) U (1,00)

n=1

is open. (Draw pictures until you see this.)

Question. Is the Cantor Middle Thirds set open, closed
or neither



Intervals of the form [a, b] are said to be compact inter-
vals. More general compact sets will be defined later.

Definition. A function f : D — R is bounded above
if 3 BeRst. f(r) < B,VoxeD. Afunction f: D - R
is bounded below if 3 B € Rs.t. f(x) > BVre D. A
function f : D — R is bounded is if it is bounded above
and below.

Extreme Value Theorem (18.1). Let f : [a,b] — R be
continuous. Then f is bounded. Furthermore, 3 ¢ € [a, b]
s.t. f(c) > f(x)Vx € [a,b] and T d € [a,b] s.t. f(d) < f(z)
Vo € [a,b].

Examples. Before proving this theorem we give some
examples showing this theorem fails if the domain is not
compact or f is not continuous.

1. tanz is continuous on (—m /2, 7/2) but is not bounded
above or below.

2. secx is continuous on (—m/2,7/2) but is not bounded
above. It is bounded below and has a minimum value at
x = 0.

3. arctanx is continuous on R, is bounded above and
below, but has no minimum or maximum values.

4. 2% is continuous on R, is unbounded above, but is
bounded below and has a minimum value at x = 0.

Proof. Let I = [a, b].

First we show that f is bounded. Suppose f is not
bounded above. Then for eachn € N, 3z, € I s.t. f(x,) >
n. Thus f(z,) — oo. Now, consider the sequence (z,). By
the Bolzano-Weierstrass Theorem it has a convergent sub-
sequence, T, — ¢ € I. By the continuity of f, f(z,, ) —
f(c). But this impossible. Thus, f is bounded from above.



A similar argument shows f must be bounded from be-
low.

Now that f is bounded let M = sup f(I). (f(I) =
{f(z)|z € I}) For eachn € Nz, € [ st. M -+ <
f(x,) < M. By the Squeeze Theorem f(x,) — M. By the
B-W Theorem (x,) has a convergent subsequence z,, —
cel. Also f(z,, ) — M. Thus, by continuity f(c) = M.

Let N = inf f(I). A similar argument shows 3d € [ s.t.
f(d)=N. O

Intermediate Value Theorem. Let [ be an interval
in R and let f : I — R be continuous. Let a,b € I, a <b
and f(a) # f(b). If y is in between f(a) and f(b), then 3

z € (a,b) s.t. f(x)=y.

(Draw pictures in class.)

Proof. Suppose, f(a) <y < f(b).

Let S = {z € [a,b]| f(z) < y}. Since a € S, we know
S # (). Since b is an upper bound of S we know S has a
least upper bound. Let zy = lub 5 clearly, xy < .

We will show that f(xy) = y. First we show that f(x¢) <
y, then we show that f(xy) > y. Let n € N. Then z, —

3=

is not an upper bound of S. Hence, 4 z,, € S s.t.
Ty — % < x, < xp.

Consider the sequence (z,,). By the Squeeze Theorem x,, —
Zo.

By continuity f(x,) — f(x¢). Since each f(x,) < y we
know f(zg) < y. [To prove this suppose f(zg) > y. Let
e = (f(zg) — y)/2. Then for no value of n is f(x,) €
(f(xo) — €, f(xo) +€). This contradicts convergence.]



Now we show f(z9) > y. Let n € N. Then zy + + is
an upper bound of S. The sequence x(y + % converges to
xp, but its terms may not be in the domain of f. To get
around this let ¢, = min{b, zo+1}. Now ¢, — zy and f(t,)
is defined.

By continuity f(¢,) — f(zg). Since t, is never in S,
f(tn) > y. Thus f(z) > y.

By ordered field axiom O2, f(xg) = y and we are done.
O

A Fixed Point Theorem. Let f : [0,1] — [0,1] be
continuous. Then 3 ¢ € [0,1] s.t. f(c) = c.

Proof. See textbook, Example 1, pages 135-136. This would
be a reasonable test question. [

Theorem (Corollary 18.3 in textbook). Let f : D —
R be continuous. Let I C D be an interval. Then J = f(I)
is an interval or a point.

Proof. If f is a constant on I then f(I) is a point. Let
a,c € J and suppose a < b < c¢. We must show b € J. Let
a',d € I with f(a') = a and f(¢) = ¢. By the IVT 3 ¥
in between a’ and ¢ with f(b') = b. Since O’ € I it follows
that b € J. Thus, J is an interval. O

Different kinds of intervals can be mapped onto each
other.

Let f(z)
Let g(z)
Let s(x)

x/(x? —1). Then f((—=1,1)) =R,
22, Then g((—1,1)) = [0, 1).
sin(x). Then s((—10,10)) = [-1, 1].



Let a(z) = arctan(x). Then a(R) = (—7/2,7/2).
Let b(z) = e~ . Then b(R) = (0, 1].

Remark. However, it is shown in MATH 452 that the
continuous image of a compact interval is a compact in-
terval or a point. The proof is actually not hard. Let
f : ]la,b] — R be continuous. By the EVT there exists
points ¢ and d in [a,b] s.t. f(d) < f(x) < f(c) for all
x € [a,b]. If it happens that f(d) = f(c) then f([a,b]) is a
point. Otherwise, for any y € (f(d), f(c)) the IVT asserts
that there is a point x in between ¢ and d s.t. f(x) = y.

Thus, f([a,b]) = [f(d), f(c)].

Some review on functions from MATH 302. (I
probably should put this at the beginning of Ch 3 notes. It
is in Ch 4 of the main MATH 302 textbook.)

Let f: X — Y be a function. The image of f is f(X) =
{f(x) € Y|z € X}. This is also called the codomain of f.
Many books also call this the range of f, but the MATH
302 textbook called all of Y the range of f. Some books
call Y the target set of f. Do not get too hung up on the
terminology. We can also define the image of a subset of
the domain.

If the image of f is all of Y then f is an onto function.
It is also said to be surjective which comes from a French
word for onto. Given a function f : X — Y we can create
an onto function fy,;, : X — f(X) that equals f. Normally
we do not even bother giving this function a new symbol
and just write f : X — f(X).

If B C Y then the inverse image of B is f~}(B) =
{r € X|f(x) € B}. This is also called the preimage
or sometimes the pullback of B. It can happen that the
inverse image of a set is empty. Note that here f~! can be



thought of as a function from the set of subsets of Y to the
set of subsets of X.

We say [ is one-to-one or injective if f(z1) = f(x9)
implies z1 = x9. If f : X — Y is one-to-one and onto then
it is called a one-to-one correspondence or a bijection.

In this case f~! has the property that f~! of a one-point
set is a one-point set. Thus, we can regard it as a function
from Y to X. Then f~! : Y — X is given by f1(y)
equals the only = € X such that f(x) =y. We say f is an
invertible function and that f~! is the inverse of f.

Back to MATH 352.

Definition. Let f : [ — R, where [ is an interval. Let
a,bel.
If a < b implies f(a) < f(b), then we say f is increasing
on I.
If @ < b implies f(a) > f(b), then we say f is decreasing
on I.

Fact. If f is increasing on [ it is one-to-one on [. If f is
decreasing on [ it is one-to-one on .

Theorem. Let f: I — J, where and I and J are inter-
vals in R. Suppose f is one-to-one and onto.
(a) If f is increasing on I, then f~! is increasing on J.
(b) If f is decreasing on I, then f~! is decreasing on J.

Proof. We will prove (a). The proof of (b) is similar. Let
Y1,%2 € J with y; < 90. Let 71 = f~1(y1) and 23 = f~1(10).
Clearly x1 # x9, so either x1 < z9 or x9 < x1. But, the
latter would contradict the given that f is increasing. Thus,
y1 < o implies 21 < x5 so f~! is increasing on J. O



Remark. It can be shown from this that if f is continu-
ous and has an inverse, then the inverse is also continuous.
See Theorems 18.4 and 18.5 in the textbook. This will be
used in Section 29 to derive a formula for the derivative of
the inverse of a function. See Theorem 29.9.

Theorem (18.6). Let f: I — R, where [ is an interval.
If f is continuous and one-to-one on I, then f is either
increasing or decreasing on I.

Proof. See textbook, page 138. Treat it as optional reading.
H



