
Extreme Theorems
Section 18

Definition. A subset I of R with more than one point is
called an interval if whenever a, c ∈ I and a < b < c then
b ∈ I.

There are nine types of intervals:
(a, b) (a,∞) R = (−∞,∞)
[a, b) [a,∞)
(a, b] (−∞, b)
[a, b] (−∞, b]

It is easy though laborious to check these are the only
possible types of intervals. An interval I either has sup I
infinity or finite and if finite I either contains sup I or it
does not. Likewise for inf I. If you check all the possibilities
you get the nine cases.

Intervals of the forms (a, b), (−∞, b), (a,∞) and R are
said to be open intervals. A subset of R is open if it is
a union of open intervals. A subset of R is closed if it is
the complement of an open subset. (The empty set, ∅, is
defined to be open, which leads to the oddity that R and ∅
are both open and closed!)

Example. The set {0} ∪ { 1n |n ∈ N} is closed since its
complement

(−∞, 0) ∪

( ∞⋃
n=1

(
1

n+1 ,
1
n

))
∪ (1,∞)

is open. (Draw pictures until you see this.)

Question. Is the Cantor Middle Thirds set open, closed
or neither



Intervals of the form [a, b] are said to be compact inter-
vals. More general compact sets will be defined later.

Definition. A function f : D → R is bounded above
if ∃ B ∈ R s.t. f(x) ≤ B, ∀x ∈ D. A function f : D → R
is bounded below if ∃ B ∈ R s.t. f(x) ≥ B ∀x ∈ D. A
function f : D → R is bounded is if it is bounded above
and below.

Extreme Value Theorem (18.1). Let f : [a, b]→ R be
continuous. Then f is bounded. Furthermore, ∃ c ∈ [a, b]
s.t. f(c) ≥ f(x) ∀x ∈ [a, b] and ∃ d ∈ [a, b] s.t. f(d) ≤ f(x)
∀x ∈ [a, b].

Examples. Before proving this theorem we give some
examples showing this theorem fails if the domain is not
compact or f is not continuous.

1. tanx is continuous on (−π/2, π/2) but is not bounded
above or below.

2. sec x is continuous on (−π/2, π/2) but is not bounded
above. It is bounded below and has a minimum value at
x = 0.

3. arctanx is continuous on R, is bounded above and
below, but has no minimum or maximum values.

4. x2 is continuous on R, is unbounded above, but is
bounded below and has a minimum value at x = 0.

Proof. Let I = [a, b].
First we show that f is bounded. Suppose f is not

bounded above. Then for each n ∈ N, ∃xn ∈ I s.t. f(xn) >
n. Thus f(xn)→∞. Now, consider the sequence (xn). By
the Bolzano-Weierstrass Theorem it has a convergent sub-
sequence, xnk

→ c ∈ I. By the continuity of f , f(xnk
) →

f(c). But this impossible. Thus, f is bounded from above.



A similar argument shows f must be bounded from be-
low.

Now that f is bounded let M = sup f(I). (f(I) =
{f(x) |x ∈ I}) For each n ∈ N ∃ xn ∈ I s.t. M − 1

n <
f(xn) ≤M . By the Squeeze Theorem f(xn)→M . By the
B-W Theorem (xn) has a convergent subsequence xnk

→
c ∈ I. Also f(xnk

)→M . Thus, by continuity f(c) = M .
Let N = inf f(I). A similar argument shows ∃ d ∈ I s.t.

f(d) = N . �

Intermediate Value Theorem. Let I be an interval
in R and let f : I → R be continuous. Let a, b ∈ I, a < b
and f(a) 6= f(b). If y is in between f(a) and f(b), then ∃
x ∈ (a, b) s.t. f(x) = y.

(Draw pictures in class.)

Proof. Suppose, f(a) < y < f(b).

Let S = {x ∈ [a, b] | f(x) < y}. Since a ∈ S, we know
S 6= ∅. Since b is an upper bound of S we know S has a
least upper bound. Let x0 = lub S; clearly, x0 ≤ b.

We will show that f(x0) = y. First we show that f(x0) ≤
y, then we show that f(x0) ≥ y. Let n ∈ N. Then xo − 1

n

is not an upper bound of S. Hence, ∃ xn ∈ S s.t.

x0 − 1
n < xn ≤ x0.

Consider the sequence (xn). By the Squeeze Theorem xn →
x0.

By continuity f(xn) → f(x0). Since each f(xn) < y we
know f(x0) ≤ y. [To prove this suppose f(x0) > y. Let
ε = (f(x0) − y)/2. Then for no value of n is f(xn) ∈
(f(x0)− ε, f(x0) + ε). This contradicts convergence.]



Now we show f(x0) ≥ y. Let n ∈ N. Then x0 + 1
n is

an upper bound of S. The sequence x0 + 1
n converges to

x0, but its terms may not be in the domain of f . To get
around this let tn = min{b, x0+ 1

n}. Now tn → x0 and f(tn)
is defined.

By continuity f(tn) → f(x0). Since tn is never in S,
f(tn) ≥ y. Thus f(x0) ≥ y.

By ordered field axiom O2, f(x0) = y and we are done.
�

A Fixed Point Theorem. Let f : [0, 1] → [0, 1] be
continuous. Then ∃ c ∈ [0, 1] s.t. f(c) = c.

Proof. See textbook, Example 1, pages 135-136. This would
be a reasonable test question. �

Theorem (Corollary 18.3 in textbook). Let f : D →
R be continuous. Let I ⊂ D be an interval. Then J = f(I)
is an interval or a point.

Proof. If f is a constant on I then f(I) is a point. Let
a, c ∈ J and suppose a < b < c. We must show b ∈ J . Let
a′, c′ ∈ I with f(a′) = a and f(c′) = c. By the IVT ∃ b′
in between a′ and c′ with f(b′) = b. Since b′ ∈ I it follows
that b ∈ J . Thus, J is an interval. �

Different kinds of intervals can be mapped onto each
other.

Let f(x) = x/(x2 − 1). Then f((−1, 1)) = R.

Let g(x) = x2. Then g((−1, 1)) = [0, 1).

Let s(x) = sin(x). Then s((−10, 10)) = [−1, 1].



Let a(x) = arctan(x). Then a(R) = (−π/2, π/2).

Let b(x) = e−x
2

. Then b(R) = (0, 1].

Remark. However, it is shown in MATH 452 that the
continuous image of a compact interval is a compact in-
terval or a point. The proof is actually not hard. Let
f : [a, b] → R be continuous. By the EVT there exists
points c and d in [a, b] s.t. f(d) ≤ f(x) ≤ f(c) for all
x ∈ [a, b]. If it happens that f(d) = f(c) then f([a, b]) is a
point. Otherwise, for any y ∈ (f(d), f(c)) the IVT asserts
that there is a point x in between c and d s.t. f(x) = y.
Thus, f([a, b]) = [f(d), f(c)].

Some review on functions from MATH 302. (I
probably should put this at the beginning of Ch 3 notes. It
is in Ch 4 of the main MATH 302 textbook.)

Let f : X → Y be a function. The image of f is f(X) =
{f(x) ∈ Y |x ∈ X}. This is also called the codomain of f .
Many books also call this the range of f , but the MATH
302 textbook called all of Y the range of f . Some books
call Y the target set of f . Do not get too hung up on the
terminology. We can also define the image of a subset of
the domain.

If the image of f is all of Y then f is an onto function.
It is also said to be surjective which comes from a French
word for onto. Given a function f : X → Y we can create
an onto function fonto : X → f(X) that equals f . Normally
we do not even bother giving this function a new symbol
and just write f : X → f(X).

If B ⊂ Y then the inverse image of B is f−1(B) =
{x ∈ X | f(x) ∈ B}. This is also called the preimage
or sometimes the pullback of B. It can happen that the
inverse image of a set is empty. Note that here f−1 can be



thought of as a function from the set of subsets of Y to the
set of subsets of X.

We say f is one-to-one or injective if f(x1) = f(x2)
implies x1 = x2. If f : X → Y is one-to-one and onto then
it is called a one-to-one correspondence or a bijection.

In this case f−1 has the property that f−1 of a one-point
set is a one-point set. Thus, we can regard it as a function
from Y to X. Then f−1 : Y → X is given by f−1(y)
equals the only x ∈ X such that f(x) = y. We say f is an
invertible function and that f−1 is the inverse of f .

Back to MATH 352.

Definition. Let f : I → R, where I is an interval. Let
a, b ∈ I.
If a < b implies f(a) < f(b), then we say f is increasing
on I.
If a < b implies f(a) > f(b), then we say f is decreasing
on I.

Fact. If f is increasing on I it is one-to-one on I. If f is
decreasing on I it is one-to-one on I.

Theorem. Let f : I → J , where and I and J are inter-
vals in R. Suppose f is one-to-one and onto.
(a) If f is increasing on I, then f−1 is increasing on J .
(b) If f is decreasing on I, then f−1 is decreasing on J .

Proof. We will prove (a). The proof of (b) is similar. Let
y1, y2 ∈ J with y1 < y2. Let x1 = f−1(y1) and x2 = f−1(y2).
Clearly x1 6= x2, so either x1 < x2 or x2 < x1. But, the
latter would contradict the given that f is increasing. Thus,
y1 < y2 implies x1 < x2 so f−1 is increasing on J . �



Remark. It can be shown from this that if f is continu-
ous and has an inverse, then the inverse is also continuous.
See Theorems 18.4 and 18.5 in the textbook. This will be
used in Section 29 to derive a formula for the derivative of
the inverse of a function. See Theorem 29.9.

Theorem (18.6). Let f : I → R, where I is an interval.
If f is continuous and one-to-one on I, then f is either
increasing or decreasing on I.

Proof. See textbook, page 138. Treat it as optional reading.
�


