
Term by Term
Section 26

Section 26 is awkward because the author will be studying derivatives
and integrals of power series even though derivatives and integrals have
not yet been defined.
The main results are that term-by-term differentiation and integra-

tion do not change the radius of convergence. We will be interested in
showing that the convergence is uniform, and we will study behavior
at the end points of the interval of convergence.

Definition. Let
∞
∑

n=0

anx
n be a power series. For now define its

derivative to be
(

∞
∑

n=0

anx
n

)

′

=
∞
∑

n=0

nanx
n−1.

We define its integral to be
∞
∑

n=0

an
n+ 1

xn+1.

You should notice that
(

∞
∑

n=0

an
n+ 1

xn+1

)

′

=
∞
∑

n=0

anx
n.

Fact (Lemma 26.3) The derivative and integral of a power series
have the same radius of convergence as the original series.

Proof. We will only do the derivative case. Let R be the radius of con-
vergence of the original series. Then one over the radius of convergence
of the derivative is

lim sup |nan|
1/n = lim supn1/n|an|

1/n = limn1/n · lim sup |an|
1/n = 1/R.

�

The Theorems 26.4 and 26.5 are devoid of meaning at this stage.



Theorem 26.1 Suppose
∞
∑

n=0

anx
n is a power series with radius of

convergence R > 0. Let P be a real number s.t. 0 < P < R. Then the
power series converges uniformly on [−P, P ]. The limit is a continuous
function.

Proof. The proof is an application of the Weierstrass M-test. First,
notice that

∑

anx
n and

∑

|an|x
n have the same radius of convergence

since since the formula for the radius of convergence depends only on
|an|.

Since |P | < R we know that
∑

|an|x
n converges for x = P , that is

∑

|an|P
n < ∞.

Let Mk = |ak|P
k for k = 0, 1, 2, 3.... Since for x ∈ [−P, P ]

|akx
k| ≤ |ak|P

k = Mk &
∑

Mk < ∞

the Weierstrass M-test shows the original power series converges uni-
formly on [−P, P ]. Since each of the partial sums is a polynomial and
polynomials are continuous, the limiting function is continuous. �

With a little more work we can show the limit is continuous on all
of (−R,R) even though the convergence need not be uniform. This is
Corollary 26.2 in the textbook. Proof. Let x∗ ∈ (−R,R). If x∗ ≥ 0
let P be any point between x∗ and R. If x∗ < 0 let P be any point
between −x∗ and R. Then x∗ ∈ [−P, P ] ⊂ (−R,R).

x∗ R−R P−P 0

The last theorem then shows the limit function is continuous at x∗.

Now we consider the end points.

Abel’s Theorem (26.6). Consider a power series
∑

anx
n that

has radius of convergence R s.t. 0 < R < ∞.
If the series converges at x = ±R then the limit function is continuous
there.



Example. The Taylor series of arctan x is known to be
∞
∑

n=0

(−1)n

2n+ 1
x2n+1 = x−

x3

3
+

x5

5
−

x7

7
+ · · ·

with radius of convergence R = 1.

See: https://www.youtube.com/watch?v=Hh1VIxc9ZgM

For x = 1 the alternating series test shows that it converges. Abel’s
Theorem shows the limit is continuous. Therefore,

1−
1

3
+

1

5
−

1

7
+ · · · = arctan(1) =

π

4
.

This is one way to compute π. (It converges at x = −1 as well.)

The proof of Abel’s Theorem is long and I will do it separately.


