
Section 28: The Derivative
Part 2

Proof of the Reciprocal Rule.(
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f(x)

)′
= lim

h→0
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f(x+h)

− 1
f(x)

h

= lim
h→0

f(x)− f(x+ h)

f(x)f(x+ h)
· 1

h

= lim
h→0

f(x)− f(x+ h)

h

1

f(x)f(x+ h)

= −f ′(x)/[f(x)]2.

But, there is a slight problem with this. We assumed f(x) was not
zero at this value of x. But, what if f(x+ h) was zero for some values
of h? Here is a how we can fix this. Let f(x) = A 6= 0. Since f is
continuous, ∀ ε > 0 ∃ δ > 0 s.t. |f(y)−A| < ε for all y ∈ (x− δ, x+ δ).
Use ε = |A|/2. Now, f(x+ h) will not be zero for h ∈ (−δ, δ).
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Proof of the Quotient Rule.

(f(x)/g(x))′ = f ′(x)/g(x)−f(x)g′(x)/[g(x)]2 =
f ′(x)g(x)− f(x)g′(x)

[g(x)]2
.

Proof of the Power Rule.
For n ∈ N we use induction. You have checked (x)′ = 1 = 1x0.

Suppose, (xk)′ = kxk−1. Then

(xk+1)′ = (xk · x)′ = (xk)′x+ xk(x)′ = kxk−1x+ xk = (k + 1)xk.

For n < 0 apply the Reciprocal Rule.
For n = 0, the rule works since (x0)′ = 0x−1 where both sides are

undefined at x = 0.



The Chain Rule.

Suppose Sue can run twice as fast as Bill, and Bill can run three
times as fast as John. Then Sue can run six times as fast as John.
That is the heart of the Chain Rule: when you compose operations the
rates of change multiply.

Let f(x) = 2x + 3 and g(x) = 3x− 8. Let h(x) = f(g(x)). What is
the rate of change of h with respect to x? Clearly, h(x) = 2(3x−8)+3 =
6x− 13 and has slope 6. The slopes multiply.

Even when f and g are not linear, the tangent line for h = f ◦ g at x
will be the composition of the tangent line for g at x and the tangent
line for f at g(x). So, the slopes will multiply.

Here is an application. Suppose you are a deep sea diver. If you rise
to the surface too fast you will get the bends (nitrogen bubbles will
form in your blood vessels). Let P be pressure as a function of depth
D. But, D is a function of time t. To avoid the bends you need to keep
dP/dt below some thresh hold. By the Chain Rule

dP

dt
=
dP

dD

dD

dt
or [P (D(t))]′ = P ′(D(t))D′(t). Thus, you need to keep D′(t) small.

I’ll give a somewhat naive proof of the Chain Rule that has a gap in
it. Then we will fill in the gap. Let z = f(y), y = g(x) and consider
f(g(x)). Then

[f(g(x))]′ = lim
h→0

f(g(x+ h))− f(g(x))

h

= lim
h→0

f(g(x+ h))− f(g(x))

g(x+ h)− g(x)

g(x+ h)− g(x)

h

= lim
h→0

f(g(x+ h))− f(g(x))

g(x+ h)− g(x)
lim
h→0

g(x+ h)− g(x)

h

The second limit is clearly g′(x). We’d like to say the first limit is
f ′(g(x)). But, this may fail. It could be the g(x + h) − g(x) = 0 for
values of h arbitrarily close to 0. This would happen, for example, if g
was a constant function. Unfortunately, the fix is not that easy.



Formal Proof of the Chain Rule.

The proof below is from Stewart’s Calculus textbook in an appendix
on proofs. (Which appendix depends on the edition you have.) Your
book has a different proof. You can study it as well.

Chain Rule. Assume g(x) is differentiable at x = a and that f(u) is
differentiable at u = g(a). Let h(x) = f(g(x)). Then h is differentiable
at x = a and h′(a) = f ′(g(a))g′(a).

Proof. Let b = g(a). Let δ > 0 be small enough that (a− δ, a+ δ) is in
the domain of h(x). Assume |∆x| < δ.

Let ∆u = g(a+ ∆x)− g(a).
Let ∆y = f(b+ ∆u)− f(b).

We define two functions, σ1(∆x) and σ2(∆u).

σ1(∆x) =

{
∆u
∆x
− g′(a) for ∆x 6= 0

0 for ∆x = 0

σ2(∆u) =

{
∆y
∆u
− f ′(b) for ∆u 6= 0

0 for ∆u = 0

Now we can express ∆u and ∆y as follows.

∆u = (σ1(∆x) + g′(a))∆x.

∆y = (σ2(∆u) + f ′(b))∆u = (σ2(∆u) + f ′(b))(σ1(∆x) + g′(a))∆x.

Now we put it all together.

h′(x) = lim
∆x→0

∆y

∆x
= lim

∆x→0
(σ2(∆u) +f ′(b))(σ1(∆x) + g′(a)) = f ′(b)g′(a).
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