Section 29: The Mean Value Thm

The Mean Value Theorem (MVT) is one you encountered in calculus
but may not remember. It sort of hides in the background. But, it is
a vital component of the theory of calculus.

Here is a rough statement of it: If Grandma lives 100 miles away and
you drive there in one hour, she knows you were speeding! The point
is if you drove 100 miles in one hour, your average speed was 100 mph.
Hence at some point you were driving 100 mph which is over the speed
limit. We turn this deep insight of Grandma’s into math as follows.

The Mean Value Theorem. Let f be a continuous function on a
compact interval [a, b] that is differentiable on (a,b). Then 3 at least
one value x € (a,b) such that the rate of change of f at z is equal to
the average rate of change of f over [a, b]:

We will build up to the proof by proving two preliminary theorems.
At several points the book invokes Corollary 20.7, so I'll review that
first.

Useful Fact (Cor. 20.7). Let lim f(x) = L. This presupposes
T—ra
that f is defined for values of x in an open interval containing a, but
not necessarily at x = a. Then Ve > 0,3 > 0 s.t.
O0<|z—al<éd = |f(z)—L|<e

(In fact this is and if and only if, but we only need one direction. It is
just a restatement of the definition of a limit.)

Theorem. (29.1) This is often called Fermat’s Theorem. If f(x)
has a local maximum or minimum at x = ¢, and if f'(c¢) exists, then

J'(e) =o0.

Proof. Assume f(x) has a local maximum at x = ¢. The other case is
similar. Let 6; > 0 be s.t |c — x| < &; implies f(z) < f(c). Suppose
f'(¢) > 0. We shall deduce a contradiction. We know

o Tl = £




Let € = f'(¢)/2. 3 05 € (0,61) s.t. 0 # |h| < b2 implies

flet+h) = [l
h

is within € of f’(c¢) and hence
fleth) = [l
h

This has to be true whether A is positive or negative. But, for A > 0
this implies f(c+ h) > f(c). Contradiction!
If we had f’(¢) < 0 a similar contradiction arises. Check this. O

> 0.

Here is an outline of all the cases and subcases of the proof of Fer-
mat’s Theorem

Case I. f(z) has a local maximum at z = c.
(a) Suppose f'(c) > 0. Get contradiction.
(b) Suppose f'(¢) < 0. Get contradiction.
Case II. f(z) has a local minimum at x = c.
(a) Suppose f’(c) > 0. Get contradiction.
(b) Suppose f'(¢) < 0. Get contradiction.

We only did I(a). It is important that you see the “global structure” of
the proof. It would be a good exercise for you to write out the details
of each case.

Rolle’s Theorem. Let f be continuous on [a,b] and differentiable
n (a,b). If f(a) = f(b), then 3 at least one value ¢ € (a,b) such that

f'(c)=0.

Proof. We know from the Extreme Value Theorem that f obtains its
minimum and maximum values: 3 z; and 25 in [a, b] s.t.

fay) < f(z) < f(z2)

for all x € [a,b]. If z; and x are the end points of [a,b] then the
min and max of f are equal since f(a) = f(b). In this case f'(x) =0
everywhere.

So, suppose either the max or min occurs at some interior point
¢ € (a,b). Then by Fermat’s Theorem f'(c) = 0. O

Proof of the Mean Value Theorem. See the picture in your book on
page 234. The points (a, f(a)) and (b, f(b)) determine a line. An



equation for this line is

h(z) = (W) (2 —a) + f(a).

Define a new function

g9(x) = f(x) — h(x).
Then g is continuous on [a, b], differentiable on (a,b) and g(a) = g(b)
since they are both zero. Thus, we can apply Rolle’s Theorem to g; 3
c € (a,b) s.t ¢’(c) = 0. Hence

£ = () + H(e) =0+ LO 1D,

as desired. 0

The figure on the left illustrates Rolle’s Theorem while the figure on
the right illustrates the Mean Value Theorem.




