Section 36: Improper Integrals

Example 0. I do the following pseudo-example in my calculus classes. Compute

$$\int_{-1}^{1} \frac{1}{x^2} \, dx.$$

Fake Solution.

$$\int_{-1}^{1} \frac{1}{x^2} dx = \left(-\frac{1}{x}\right) \Big|_{-1}^{1} = (-1) - (1) = -2.$$

Typically, the students offer no objection to this. I highlight the absurdity of this conclusion using the graph of $y = 1/x^2$. The FTC fails to apply here because the function is unbounded. Then we move on to *improper integrals*.

Definition. Let $f:[a,b) \to \mathbb{R}$, $a < b \le \infty$. Suppose f is integrable on each compact interval [a,c], where a < c < b. Then we define the *improper integral* of f from a to b as

$$\int_a^b f(x) dx = \lim_{c \to b^-} \int_a^c f(x) dx,$$

when this limit exists.

Example 1.

$$\int_{1}^{\infty} e^{-x} dx = \lim_{c \to \infty} \int_{1}^{c} e^{-x} dx = \lim_{c \to \infty} -e^{-x} \Big|_{1}^{c} = \left(\lim_{c \to \infty} -e^{-c}\right) - (-e^{-1}) = 0 + e^{-1} = 1/e.$$

Note. In this section we will make free use of integration formulas you learned in calculus.

Example 2.

$$\int_0^{\pi/2} \tan x \, dx = \lim_{c \to \frac{\pi}{2}^-} \int_0^c \tan x \, dx = \lim_{c \to \frac{\pi}{2}^-} \ln \sec x \Big|_0^c$$

$$= \lim_{c \to \frac{\pi}{2}^-} \ln \sec c - \ln \sec 0 = \lim_{d \to \infty} \ln d - \ln 1 = \infty - 0 = \infty.$$

Example 3.

$$\int_0^\infty \sin x \, dx = \lim_{c \to \infty} \int_0^c \sin x \, dx = (\lim_{c \to \infty} -\cos c) - (-\cos 0) = -(\lim_{c \to \infty} \cos c) + 1,$$
 but $\lim_{c \to \infty} \cos c$ does not exist.

Definition. Let $f:(a,b]\to\mathbb{R}$ where $-\infty\leq a< b$. Suppose f is integrable on each compact interval [c,b] where a< c< b. Then we define

$$\int_a^b f(x) dx = \lim_{c \to a^+} \int_c^b f(x) dx,$$

when this limit exist.

Example 4.

$$\int_0^1 \frac{1}{\sqrt{x}} dx = \lim_{c \to 0^+} \int_c^1 x^{-1/2} dx = \lim_{c \to 0^+} 2x^{1/2} \Big|_c^1 = \lim_{c \to 0^+} (2 - 2c^{1/2}) = 2.$$

Discussion. Integrals of the form $\int_{-\infty}^{\infty} f(x) dx$ for continuous functions are handled by considering $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$. If both

are finite their sum is defined to be $\int_{-\infty}^{\infty} f(x) dx$. If one is finite and the other is infinity we set $\int_{-\infty}^{\infty} f(x) dx = \infty$. If one is finite and the other is $-\infty$ we set $\int_{-\infty}^{\infty} f(x) dx = -\infty$. If both are ∞ we set $\int_{-\infty}^{\infty} f(x) dx = \infty$. If both are $-\infty$ we set $\int_{-\infty}^{\infty} f(x) dx = -\infty$. If one is ∞ and the other is $-\infty$ than $\int_{-\infty}^{\infty} f(x) dx$ is left undefined. These results are not effected by the value of c.

Example 5.
$$\int_{-\infty}^{\infty} x^3 dx$$
 is undefined.

Example 6. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sec x \, dx$, if it exists, is

$$\int_{-\frac{\pi}{2}}^{0} \sec x \, dx + \int_{0}^{\frac{\pi}{2}} \sec x \, dx.$$

These are both infinity.

$$\int_0^{\frac{\pi}{2}} \sec x \, dx = \lim_{c \to \frac{\pi}{2}^-} \ln(\sec x + \tan x) \Big|_0^c = \lim_{c \to \frac{\pi}{2}^-} \ln(\sec x + \tan x) - \ln(\sec 0 + \tan 0)$$

$$= \lim_{d \to \infty} \ln d + \ln 1 = \infty.$$

You can check $\int_{-\frac{\pi}{2}}^{0} \sec x \, dx = \infty$. Thus,

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sec x \, dx = \infty.$$

Basic properties of integrals carry over to improper integrals. For example

$$\int_{a}^{b} f(x) + g(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx$$

when the integrals exists and the righthand side is not $\infty - \infty$.

Example 7. Here is a silly example of what can go wrong. $\int_0^\infty x \, dx = \infty$, but

$$\int_0^\infty x \, dx = \int_0^\infty 2x - x \, dx = \int_0^\infty 2x \, dx - \int_0^\infty x \, dx = \infty - \infty$$

which is undefined.

It is easy to show that if $f(x) \ge g(x)$ on (a,b) and $\int_a^b g(x) dx = \infty$ then $\int_a^b f(x) dx = \infty$. See textbook. Note, since $\sec x \ge \tan x$ on $[0, \pi/2)$, Example 6 can be done quickly using Example 2.

The next two examples use material we have not covered, but is standard in Calc II or Calc III courses.

Example 8. $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$. See graph below. It called a *Gaussian function* or less formally a *bell curve* and is used in statistics.

Proof. We first prove that the integral exists an is finite.

$$\int_{-1}^{1} e^{-x^2} \, dx,$$

clearly exists and is finite.

$$\int_{1}^{\infty} e^{-x^2} dx \le \int_{1}^{\infty} e^{-x} = 1/e.$$

$$\int_{-\infty}^{-1} e^{-x^2} dx \le \int_{-\infty}^{-1} e^x = 1/e.$$

Thus $\int_{-\infty}^{\infty} e^{-x^2} dx$ exists and is finite. Now,

$$\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \left(\int_{-\infty}^{\infty} e^{-x^2} dx\right) \left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)$$

$$= \left(\int_{-\infty}^{\infty} e^{-x^2} dx\right) \left(\int_{-\infty}^{\infty} e^{-y^2} dy\right)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} dx dy$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} r dr d\theta \qquad \text{(convert to polar)}$$

$$= 2\pi \int_{0}^{\infty} e^{-r^2} r dr$$

$$= -\pi \int_{0}^{-\infty} e^{u} du \qquad (u\text{-substitution)}$$

$$= -\pi (e^{-\infty} - e^{0}) = \pi$$

Thus,

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.$$

Note. Along the way we have shown that the volume under the graph of the 2-dimensional Gaussian $z=e^{-r^2}$ is π .

Example 9. Consider the graph of y = 1/x over $[1, \infty)$. Now, rotate it about the x-axis to create a surface.

This is called *Gabriel's horn*. We show that its volume is π , but its surface area is infinite.

Volume. We use the disk method.

$$V = \int_{1}^{\infty} \pi \left(\frac{1}{x}\right)^{2} dx = \lim_{c \to \infty} \int_{1}^{c} \pi \left(\frac{1}{x}\right)^{2} dx = \lim_{c \to \infty} \frac{-\pi}{x} \Big|_{1}^{c} = \pi.$$

Surface Area. We use the formula for the surface area of a revolution.

$$S = \int_{1}^{\infty} \frac{2\pi}{x} \sqrt{1 + \left[\left(\frac{1}{x}\right)'\right]^{2}} dx$$
$$= \int_{1}^{\infty} \frac{2\pi}{x} \sqrt{1 + \frac{1}{x^{4}}} dx \ge 2\pi \int_{1}^{\infty} \frac{1}{x} dx = \infty.$$

The joke is, if you want to paint Gabriel's horn, you buy a π units of paint and pour them in.