
Algebraic and Transcendental Numbers

Definitions. A real (or complex) number is algebraic if it is a root
of a polynomial with integer coefficients. A real (or complex) number
that is not algebraic is a transcendental. We will only be working
with real numbers.

Examples. All rational numbers are algebraic. The numbers
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3 are algebraic.
Are there any transcendental numbers? Yes, e and π are transcen-

dental. We will not prove this now.1

Theorem. The set of algebraic numbers is countable. It follows
that the set of transcendental numbers is uncountable.

Proof. Let A be the set of algebraic numbers. Let P be the set of
polynomials with integer coefficients. We will first show that P is
countable.

Let Pn = polynomials of degree n or less with integer coefficients.
The map Pn → Zn+1, given by

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 7→ (an, an−1, . . . , a1, a0),

is a bijection. Since Zn+1 is countable so is Pn.
Now, since P = ∪∞n=1Pn, we know that P is countable.
For every a ∈ A there exists a p ∈ P such that p(a) = 0. Let

c : A → P assign to each a ∈ A a p ∈ P such that p(a) = 0. (Notice
that c is a choice function.) Unfortunately, c is not one-to-one. But,
we can get around this. Let R = c(A) ⊂ P , that is R is the range of c.
For each p ∈ R we know that c−1(p) is a finite set. (Why?) Now

A =
⋃
p∈R

c−1(p)

is a countable union of finite sets and hence is countable. �

Note: The countability of A can be established without invoking the
Axiom of Choice, but the proof is a bit more cumbersome.

1Proofs that e and π are irrational are given on pages 117 and 118, respectively,
in our textbook, Elementary Analysis by Ross. A proof that e is transcendental is
in Topics in Algebra by Herstein. It is elementary but convoluted. A proof that π
is transcendental is in Algebra by Lang. It involves rather advanced concepts.


