
Arc Length

In Part I we establish a formula for computing the arc length of the
graph of function

f : [a, b] → R.

In Part II we establish a formula for computing the arc length of the
graph of parametric function

r : [a, b] → R
2.

Part I. Let f : [a, b] → R. We will establish a formula for the length
of the graph of y = f(x) over x ∈ [a, b]. We will assume f ′(x) exists.

Li

Let {x0, x1, . . . , xn} be a partition of [a, b].

Let Li =
√

(xi+1 − xi)2 + (f(xi+1)− f(xi))2.

Li

(xi, f(xi))

(xi+1, f(xi+1))

The sum
n−1
∑

i=0

Li can be regarded as an approximation to the length

of the graph.

But, this is not in the form of a Riemann sum. We will rectify this
using the MVT.



For each i = 0, . . . , n− 1, ∃ ti ∈ (xi, xi+1) s.t.

f ′(ti) =
f(xi+1)− f(xi)

xi+1 − xi
.

Thus, f(xi+1)− f(xi) = f ′(ti)(xi+1 − xi).

Now,

Li =

√

(xi+1 − xi)2 + [f ′(ti)(xi+1 − xi)]
2 =

√

1 + [f ′(ti)]
2 (xi+1 − xi).

Thus,
n−1
∑

i=0

Li is now in the form of a Riemann sum.

If
√

1 + [f ′(x)]2 is Riemann integrable over [a, b], then

∫ b

a

√

1 + [f ′(x)]2 dx

exists and is called the arc length of the graph of y = f(x) over
a ≤ x ≤ b.

Example. Find the arc length of the graph of y = ln secx over
0 ≤ x ≤ π/4.



Solution.

L =

∫ π/4

0

√

1 + (y′)2 dx

=

∫ π/4

0

√

1 +

(

secx tan x

secx

)2

dx

=

∫ π/4

0

√

1 + tan2 x dx

=

∫ π/4

0

secx dx

= ln | secx+ tan x|
∣

∣

π/4

0

= ln
(√

2 + 1
)

− ln(1− 0) = ln
(√

2 + 1
)

≈ 0.88

Part II. Next we consider the more challenging problem of finding
the arc length of a curve in R

2 given parametrically.

r : [a, b] → R
2,



r(t) = (x(t), y(t)).

We will assume x(t) and y(t) have continuous first derivatives.

Example. The graph of r(t) = (t3 − 2t, t2) for −2 ≤ t ≤ 2 is shown
below.

Note. We will really be finding the “distance traveled,” since the
path traveled may cover parts of the curve more than once. For exam-
ple, let r(t) = (t(t− 1)2, t(t− 1)2) for 0 ≤ t ≤ 2. The curve is just the
line segment from (0,0) to (2,2). But, the path traveled passes through
the lower part of this segment 3 times. Convince yourself of this.

Now, let {t0, t1, . . . , tn} be a partition on [a, b]. Let

Li =

√

(x(ti+1)− x(ti))
2 + (y(ti+1)− y(ti))

2.

Then
n−1
∑

i=0

Li should approximate the desired length. Again, it is not

in the form of a Riemann sum.

By the MVT ∃ values t∗i and t∗∗i in each (ti, ti+1) s.t.

x′(t∗i )(ti+1 − ti) = x(ti+1)− x(ti),

y′(t∗∗i )(ti+1 − ti) = y(ti+1)− y(ti).



Thus,

Li =

√

[x′(t∗i )]
2 + [y′(t∗∗i )]2 (ti+1 − ti).

Since t∗i need not be equal to t∗∗i , we still do not have that
n−1
∑

i=0

Li is in

the form of a Riemann sum. However, we claim this sum does converge
(in the sense of Riemann integration) to

∫ b

a

√

[x′(t)]2 + [y′(t)]2 dt.

Let ǫ > 0. Let I =
∫ b

a

√

[x′(t)]2 + [y′(t)]2 dt.

We will show ∃ δ > 0 s.t.

∣

∣

∣

∣

∣

I −
n−1
∑

i=0

Li

∣

∣

∣

∣

∣

< ǫ

for any partition with mesh< δ and any pair of test point sets, {t∗0, t∗1, . . . , t∗n}
and {t∗∗0 , t∗∗1 , . . . , t∗∗n }.

Let Pi =
√

[x′(t∗i )]
2 + [y′(t∗i )]

2 (ti+1 − ti).

∃ δ1 > 0 s.t.
∣

∣

∣
I −∑n−1

i=0 Pi

∣

∣

∣
< ǫ/2 for any partition with mesh < δ1

and any set of test points {t∗0, t∗1, . . . , t∗n}.

∃ δ2 > 0 s.t. |y′(t∗i ) − y′(t∗∗i )| < ǫ
2(b−a) , whenever |t∗i − t∗∗i | < δ2 since

y′(t) is uniformly continuous over [a, b].

Let δ = min{δ1, δ2}.



Now we can report that
∣

∣

∣

∣

∣

I −
n−1
∑

i=0

Li

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

I −
n−1
∑

i=0

Pi +
n−1
∑

i=0

Pi −
n−1
∑

i=0

Li

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

I −
n−1
∑

i=0

Pi

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n−1
∑

i=0

Pi −
n−1
∑

i=0

Li

∣

∣

∣

∣

∣

≤ ǫ/2 +
n−1
∑

i=0

|Pi − Li| .

We pause to study |Pi − Li|.

|Pi − Li| =
∣

∣

∣

∣

√

[x′(t∗i )]
2 − [y′(t∗i )]

2 −
√

[x′(t∗i )]
2 − [y′(t∗∗i )]2

∣

∣

∣

∣

(ti+1 − ti).

From Exercise 1 we have
∣

∣

∣

√

a2 + b2 −
√

a2 + c2
∣

∣

∣
≤ |b− c|.

Thus,

|Pi − Li| ≤ |y′(t∗i )− y′(t∗∗i )|(ti+1 − ti) <
ǫ

2(b− a)
(ti+1 − ti).

Now we have

n−1
∑

i=0

|Pi − Li| ≤
ǫ

2(b− a)

n−1
∑

i=0

(ti+1 − ti) = ǫ/2.

Therefore,
∣

∣

∣

∣

∣

I −
n−1
∑

i=0

∣

∣

∣

∣

∣

<
ǫ

2
+

ǫ

2
= ǫ.



This justifies defining the arc length of a smooth parametric path by

L =

∫ b

a

√

[x′(t)]2 + [y′(t)]2 dt.

Exercises.

1. Prove that
∣

∣

√
a2 + b2 −

√
a2 + c2

∣

∣ ≤ |b− c|.

2. Show that the formula, L =
∫ b

a

√

1 + [f ′(x)]2 dx, for the arc length
of a graph can be derived from the formula for the arc length of a
parametric path.

3. Use a computer integration program to find the arc length of
r(t) = (t3 − 2t, t2) for −2 ≤ t ≤ 2.
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