
Cauchy Sequences

Section 10 of the textbook proves two important theo-
rems, The Monotone Convergence Theorem (10.2) and The
Cauchy Convergence Theorem (10.11), and introduces the
concepts of lim sup and lim inf used in the proof of 10.11.

Theorem. (10.2) Let (an) be a sequence of real numbers.
If it is bounded and monotone it converges to a finite limit.

Proof. There are two cases.

Case 1. Suppose (an) is decreasing or nonincreasing.
Since the underlying set is bounded it is bounded below
and thus has a glb. Call it L. We will show that

lim
n→∞

an = L.

Let ε > 0. There exists an natural number N such that

aN < L+ ε

since otherwise L+ ε would be a lower bound for {an} that
is greater than L. For all n > N we know L ≤ an ≤ aN .
Thus,

L− ε < an < L+ ε

for all n > N . Hence, |an − L| < ε when n > N . Thus,
an → L as claimed.

Case 2. Suppose (an) is increasing or nondecreasing. See
textbook.

�

Note. Theorem 10.2 fails in Q.



Definition. A sequence (an) is Cauchy if for every ε > 0
∃N ∈ N s.t. m,n > N implies |am − an| < ε.

Theorem. (10.11) A sequence of real numbers (an) con-
verges to a finite limit iff it is Cauchy.

The proof is broken down into three parts. The third
part will require the introduction of a new idea: lim sup
and lim inf. We will do the first two parts, then pause to
develop lim sup and lim inf, before coming back and doing
the last part of the proof of 10.11.

Part I (Lemma 10.9). Convergent sequences are Cauchy.

Proof. Suppose (an) converges to L. Let ε > 0.

∃N s.t. n > N implies |an − L| < ε/2.

Now suppose m,n > N . Then

|an−am| = |an−L+L−am| ≤ |an−L|+|L−am| < ε/2+ε/2 = ε.

Thus, (an) is Cauchy. �

Note. Lemma 10.9 is valid for Q.



Part II (Lemma 10.10). Cauchy sequences are bounded.

Proof. Let (an) be a Cauchy sequence. Let ε = 1. Let N
be such that if m,n > N then

|am − an| < 1.

It follows that if n > N then |an − aN+1| < 1. Thus,
|an| < |aN+1|+ 1.

Note: That last claim uses a result from Exercise 3.5
that for any two real numbers a and b∣∣|a| − |b|∣∣ ≤ |a− b|.
In our case this becomes∣∣|an| − |aN+1|

∣∣ ≤ |an − aN+1| < 1.

Thus,
−1 < |an| − |aN+1| < 1.

Ergo, |an| < |aN+1|+ 1.

Now we have a bound when n > N . It could be one of
the earlier terms was even larger so we do the following.
Let

M = max{|a1|, |a2|, . . . , |aN |, |aN+1|+ 1}.
Then M is a bound for the sequence. �



Now we pause to develop a new tool to analyze sequences.

Definition. Let (an) be a sequence. Then

lim sup an = lim
N→∞

sup{an |n > N}

and

lim inf an = lim
N→∞

inf{an |n > N}

Examples. I’ll do some examples in class to make these
understandable. You have some examples in your home-
work as well.

Let VN = sup{sn |n > N} and UN = inf{sn |n > N}.
Since VN ≥ UN we have lim sup an ≥ lim inf an.

Notice that VN is nonincreasing and UN is nondecreasing.
(See also Exercise 4.7 on page 27.) Thus, if the sequence is
bounded lim sup and lim inf will be finite real numbers.

Thus, lim sup sn ≤ VN and lim inf sn ≥ UN for any N ∈
N.

These observations will be useful.

Definition. Let (an) be a sequence. Then c ∈ R is a
cluster point of (an) if ∀ ε > 0 and ∀N ∈ N ∃n > N such
that

|an − c| < ε.

You can check that if an → L ∈ R, then L is a cluster
point.

Examples. Do some in class.



Theorem. (10.7) Let (sn) be a sequence and L ∈ R. If
lim sup sn = lim inf sn = L then lim

n→∞
sn = L.

Proof. Pick any ε > 0.

Since, VN → L we know ∃N1 s.t. |L− VN1
| < ε.

Thus,
−ε < L− VN1

< ε.

Thus,
VN1
− ε < L < VN1

+ ε.

Thus,
VN1

< L+ ε.

Thus,
sup{sn |n > N1} < L+ ε.

Thus,
sn < L+ ε, ∀n > N1.

Since UN → L we know ∃N2 s.t. |L− UN2
| < ε.

Thus,
−ε < L− UN2

< ε.

Thus,
UN2
− ε < L < UN2

+ ε.

Thus,
L− ε < UN2

.

Thus,
L− ε < inf{sn |n > N2}.

Thus,
L− ε < sn, ∀n > N2.

Let N = max{N1, N2}. Now for all n > N we have



L− ε < sn < L+ ε.

Thus,
−ε < sn − L < ε.

Thus,
|sn − L| < ε.

Hence, lim
n→∞

sn = L. �



Part III. Cauchy sequences converge.

The book’s proof uses a fact often called “the ε-principle”:
If a ≤ b+ ε for all ε > 0 then a ≤ b. Proof: Suppose a > b.
Let ε = (a− b)/2 > 0. Now a ≤ b+ (a− b)/2 implies a ≤ b.
Contradiction!

Proof. Let (sn) be a Cauchy sequence. By Lemma 10.10
lim sup sn and lim inf sn are finite. We will show

lim sup sn = lim inf sn.

Then by Theorem 10.7 we are done. Notice that from the
definition

lim sup sn ≥ lim inf sn
is always true. So, we only need to show that lim sup sn ≤
lim inf sn.

Let ε > 0.

Then ∃N ∈ N s.t. m,n > N implies |sn − sm| < ε.

Thus, sn < sm + ε, ∀n > N and any fixed m > N .

Thus, sm + ε is an upper bound of {sn |n > N}.

Thus, VN ≤ sm + ε, ∀m > N .

Thus, VN − ε is a lower bound of {sm |m > N}.

Thus, VN − ε ≤ inf{sm |m > N} = UN .

Now, lim sup sn ≤ VN ≤ UN + ε ≤ lim inf sn + ε.

Thus, lim sup sn ≤ lim inf sn + ε for all ε > 0. By the
ε-principle we are done! �


