Completeness Axiom

Definitions. Let S be a nonempty subset of R.
An upper bound for S is any real number b such
that if z € S then z < b. A least upper bound
(lub) for S is any real number ¢ such that ¢ is an
upper bound for S and if b is another upper bound
of S then ¢ < b. If S contains its least upper bound
c then we say c is the maximum of S.

Examples. Let S = (—1,1). Then 17 is an upper
bound of S and 1 is the least upper bound of S. In
this case .S does not have a maximum. Let T' =

(0,1) U{2}. Then 2 is the least upper bound and
the maximum of 7.

The terms lower bound, greatest lower bound
(glb) and minimum are defined similarly.

Examples. Let A = (0,3) UN. Then A does
not have an upper bound. Any negative number is a
lower bound and 0 is the greatest lower bound. The
set A does not have a minimum.

Let B = {"t|n € N}. Then 2 is the maximum
and 1 is the greatest lower bound. The set B does
not have a minimum.

The Completeness Axiom for R. If S is a
nonempty subset of R that is bounded from above
then S has a least upper bound.



In MATH 352 the Completeness Axiom is assumed
to be true for R. In MATH 452 we prove the Com-
pleteness Axiom is true for R.

The Completeness Axiom is false for Q. Let A =
{r € Q|r* < 2}. Then A is not empty since 1 € A.
You can show that 3 is an upper bound for A. But A
does not have a least upper bound in Q. If it did, say
r, is the lub, then it can be shown that (r,)? = 2,
but we know there is no such rational number. If

we regard A as a subset of R then it does have a
lub that is called /2. In MATH 452 we prove that
(v/2)? = 2. In MATH 352 we assume this.

Corollary. Using the Completeness Axiom it is
easy to prove that if S is a nonempty subset of R
that is bounded from below then S has a greatest
lower bound. See textbook for proof.



Definitions. Let S C R. Then the supremum
and infimum of S are defined as follows.

+oo if S # () and is not bounded above,
supS =< lub S if S # () and is bounded above,
—oo if S =0.

—oo if S # () and is not bounded below,
inf S =< ¢glbS if S0 andisbounded below,
+oo if S =10.

Theorem. The Archimedean Property. Let a
and b be positive real numbers. Then 4 n € N such
that na > b.

The proof uses the Completeness Axiom and is
harder than you would think!

Proof. Suppose not. Then 4 a > 0 and b > 0 such
that V.n € N, na < 0. Let

S ={na|n € N}.

Since b is an upper bound for .S, S must have a lub.
Call it S0-

Since 0 < a we have sy < sgp+a and hence sp—a <
S0.-

4 ny € N such that sy — a < n,a because sy — a
is less than the least upper bound of S.

Hence, sy < (ng + 1)a.



But this means (ng 4+ 1)a ¢ S. Hence, our suppo-
sition was foolish! The Archimedean Property has
been vindicated!! ]



Two Corollaries. These will be useful in proofs.
1. If a >0, then dn € N s.t. %<a.
2. If b> 0, then 3n € Nst. n>b.

Proofs.
1. Let @ > 0 and b = 1.0. By the Archimedean
Property 4 n € N s.t. na > 1. Then % < a.
2. Leta=1> 0and b > 0. By the Archimedean
Property 3n € Nst. n-1>b. Thenn > b.

Denseness of Q in R. V a and b in R, with
a<b 37 €Qst,

a < <b.

Proof. Since b —a > 0, dn € Nst. n(b—a) > 1
().

ke Nst —k <na<nb<k (Why?)

Let m be the smallest number in {—k, —k+1,... k—
1, k} that is bigger than na. Then

—k<na<m and m—1< na.
Thus, using (*),
na <m < na-+1<nb.

Thus,
a < <b.



