Completeness Axiom

Definitions. Let S be a nonempty subset of \mathbb{R} . An **upper bound** for S is any real number b such that if $x \in S$ then $x \leq b$. A **least upper bound** (lub) for S is any real number c such that c is an upper bound for S and if b is another upper bound of S then c < b. If S contains its least upper bound c then we say c is the **maximum** of S.

Examples. Let S = (-1, 1). Then 17 is an upper bound of S and 1 is the least upper bound of S. In this case S does not have a maximum. Let $T = (0,1) \cup \{2\}$. Then 2 is the least upper bound and the maximum of T.

The terms **lower bound**, **greatest lower bound** (**glb**) and **minimum** are defined similarly.

Examples. Let $A = (0,3) \cup \mathbb{N}$. Then A does not have an upper bound. Any negative number is a lower bound and 0 is the greatest lower bound. The set A does not have a minimum.

Let $B = \{\frac{n+1}{n} \mid n \in \mathbb{N}\}$. Then 2 is the maximum and 1 is the greatest lower bound. The set B does not have a minimum.

The Completeness Axiom for \mathbb{R} . If S is a nonempty subset of \mathbb{R} that is bounded from above then S has a least upper bound.

In MATH 352 the Completeness Axiom is assumed to be true for \mathbb{R} . In MATH 452 we prove the Completeness Axiom is true for \mathbb{R} .

The Completeness Axiom is **false** for \mathbb{Q} . Let $A = \{r \in \mathbb{Q} \mid r^2 < 2\}$. Then A is not empty since $1 \in A$. You can show that 3 is an upper bound for A. But A does not have a least upper bound in \mathbb{Q} . If it did, say r_* is the lub, then it can be shown that $(r_*)^2 = 2$, but we know there is no such rational number. If we regard A as a subset of \mathbb{R} then it does have a lub that is called $\sqrt{2}$. In MATH 452 we prove that $(\sqrt{2})^2 = 2$. In MATH 352 we assume this.

Corollary. Using the Completeness Axiom it is easy to prove that if S is a nonempty subset of \mathbb{R} that is bounded from below then S has a greatest lower bound. See textbook for proof.

Definitions. Let $S \subset \mathbb{R}$. Then the **supremum** and **infimum** of S are defined as follows.

$$\sup S = \left\{ \begin{array}{l} +\infty \ \ \text{if} \ \ S \neq \emptyset \ \text{and is not bounded above,} \\ \text{lub } S \ \ \text{if} \ \ S \neq \emptyset \ \text{and is bounded above,} \\ -\infty \ \ \text{if} \ \ S = \emptyset. \end{array} \right.$$

$$\inf S = \begin{cases} -\infty & \text{if } S \neq \emptyset \text{ and is not bounded below,} \\ \text{glb } S & \text{if } S \neq \emptyset \text{ and is bounded below,} \\ +\infty & \text{if } S = \emptyset. \end{cases}$$

Theorem. The Archimedean Property. Let a and b be positive real numbers. Then $\exists n \in \mathbb{N}$ such that na > b.

The proof uses the Completeness Axiom and is harder than you would think!

Proof. Suppose not. Then $\exists a > 0$ and b > 0 such that $\forall n \in \mathbb{N}, na \leq b$. Let

$$S = \{ na \mid n \in \mathbb{N} \}.$$

Since b is an upper bound for S, S must have a lub. Call it s_0 .

Since 0 < a we have $s_0 < s_0 + a$ and hence $s_0 - a < s_0$.

 $\exists n_0 \in \mathbb{N} \text{ such that } s_0 - a < n_0 a \text{ because } s_0 - a$ is less than the least upper bound of S.

Hence,
$$s_0 < (n_0 + 1)a$$
.

But 1	this means ($n_0 + 1)a \notin S$.	Hence,	our supp	O-
sition	was foolish!	The Archime	dean Pro	operty ha	аs
been v	indicated!!			[

Two Corollaries. These will be useful in proofs.

- 1. If a > 0, then $\exists n \in \mathbb{N}$ s.t. $\frac{1}{n} < a$.
- 2. If b > 0, then $\exists n \in \mathbb{N} \text{ s.t. } n > b$.

Proofs.

1. Let a > 0 and b = 1.0. By the Archimedean Property $\exists n \in \mathbb{N} \text{ s.t. } na > 1$. Then $\frac{1}{n} < a$.

2. Let a=1>0 and b>0. By the Archimedean Property $\exists n \in \mathbb{N} \text{ s.t. } n \cdot 1>b$. Then n>b.

Denseness of \mathbb{Q} in \mathbb{R} . \forall a and b in \mathbb{R} , with $a < b, \exists \frac{m}{n} \in \mathbb{Q}$ s.t.

$$a < \frac{m}{n} < b$$
.

Proof. Since $b-a>0, \exists n\in\mathbb{N} \text{ s.t. } n(b-a)>1$ (*).

$$\exists k \in \mathbb{N} \text{ s.t. } -k < na < nb < k. \text{ (Why?)}$$

Let m be the smallest number in $\{-k, -k+1, \dots, k-1, k\}$ that is bigger than na. Then

$$-k < na < m$$
 and $m - 1 \le na$.

Thus, using (*),

$$na < m \le na + 1 < nb$$
.

Thus,

$$a < \frac{m}{n} < b$$
.