
Completeness Axiom

Definitions. Let S be a nonempty subset of R.
An upper bound for S is any real number b such
that if x ∈ S then x ≤ b. A least upper bound
(lub) for S is any real number c such that c is an
upper bound for S and if b is another upper bound
of S then c < b. If S contains its least upper bound
c then we say c is the maximum of S.

Examples. Let S = (−1, 1). Then 17 is an upper
bound of S and 1 is the least upper bound of S. In
this case S does not have a maximum. Let T =
(0, 1) ∪ {2}. Then 2 is the least upper bound and
the maximum of T .

The terms lower bound, greatest lower bound
(glb) and minimum are defined similarly.

Examples. Let A = (0, 3) ∪ N. Then A does
not have an upper bound. Any negative number is a
lower bound and 0 is the greatest lower bound. The
set A does not have a minimum.

Let B =
{
n+1
n |n ∈ N

}
. Then 2 is the maximum

and 1 is the greatest lower bound. The set B does
not have a minimum.

The Completeness Axiom for R. If S is a
nonempty subset of R that is bounded from above
then S has a least upper bound.



In MATH 352 the Completeness Axiom is assumed
to be true for R. In MATH 452 we prove the Com-
pleteness Axiom is true for R.

The Completeness Axiom is false for Q. Let A =
{r ∈ Q | r2 < 2}. Then A is not empty since 1 ∈ A.
You can show that 3 is an upper bound for A. But A
does not have a least upper bound in Q. If it did, say
r∗ is the lub, then it can be shown that (r∗)

2 = 2,
but we know there is no such rational number. If
we regard A as a subset of R then it does have a
lub that is called

√
2. In MATH 452 we prove that

(
√

2)2 = 2. In MATH 352 we assume this.

Corollary. Using the Completeness Axiom it is
easy to prove that if S is a nonempty subset of R
that is bounded from below then S has a greatest
lower bound. See textbook for proof.



Definitions. Let S ⊂ R. Then the supremum
and infimum of S are defined as follows.

supS =

 +∞ if S 6= ∅ and is not bounded above,
lub S if S 6= ∅ and is bounded above,
−∞ if S = ∅.

inf S =

 −∞ if S 6= ∅ and is not bounded below,
glb S if S 6= ∅ and is bounded below,
+∞ if S = ∅.

Theorem. The Archimedean Property. Let a
and b be positive real numbers. Then ∃ n ∈ N such
that na > b.

The proof uses the Completeness Axiom and is
harder than you would think!

Proof. Suppose not. Then ∃ a > 0 and b > 0 such
that ∀ n ∈ N, na ≤ b. Let

S = {na |n ∈ N}.
Since b is an upper bound for S, S must have a lub.
Call it s0.

Since 0 < a we have s0 < s0+a and hence s0−a <
s0.

∃ n0 ∈ N such that s0 − a < noa because s0 − a
is less than the least upper bound of S.

Hence, s0 < (n0 + 1)a.



But this means (n0 + 1)a /∈ S. Hence, our suppo-
sition was foolish! The Archimedean Property has
been vindicated!! �



Two Corollaries. These will be useful in proofs.
1. If a > 0, then ∃ n ∈ N s.t. 1

n < a.
2. If b > 0, then ∃ n ∈ N s.t. n > b.

Proofs.
1. Let a > 0 and b = 1.0. By the Archimedean
Property ∃ n ∈ N s.t. na > 1. Then 1

n < a.
2. Let a = 1 > 0 and b > 0. By the Archimedean
Property ∃ n ∈ N s.t. n · 1 > b. Then n > b.

Denseness of Q in R. ∀ a and b in R, with
a < b, ∃ m

n ∈ Q s.t.

a < m
n < b.

Proof. Since b − a > 0, ∃ n ∈ N s.t. n(b − a) > 1
(*).

∃ k ∈ N s.t. −k < na < nb < k. (Why?)

Let m be the smallest number in {−k,−k+1, . . . , k−
1, k} that is bigger than na. Then

−k < na < m and m− 1 ≤ na.

Thus, using (*),

na < m ≤ na + 1 < nb.

Thus,
a < m

n < b.

�


