
Finite and Infinite Sets

This material is not in the Ross textbook. It can be found in Chapter
5 of A Transition to Advance Mathematics, by Smith, Eggen & Andre,
the textbook that is often used in MATH 302.

Definitions. A set is finite if it is empty or can be put into one-
to-one correspondence with a set of the form {1, 2, 3, . . . , n}. A set is
countably infinite if it can be put into one-to-one correspondence
with N. A set is countable is it is finite or countably infinite. A set
is uncountable if it is not finite and cannot be put into one-to-one
correspondence with N.

Facts. You should know from MATH 302 how to show that Q is
countably infinite and that R is uncountable.

Mystery. Is there a set whose cardinality is strictly in between the
cardinalities of N and R? Lookup the Continuum Hypothesis.

Theorem 1. A finite union of finite sets is finite.

Theorem 2. A countable union of finite sets is countable.

Theorem 3. A finite union of countable sets is countable.

Theorem 4. A countable union of countable sets is countable.

Theorem 5. A finite product of finite sets is finite.

Theorem 6. A finite product of countable sets is countable.

Theorem 7. But, countably infinite products of nonempty finite
sets are not countable.

I will assume you have seen in MATH 302 Theorems 1, 2, 3, and 5.
Here is an example illustrating Theorem 7. Let

X =
∞∏
i=1

{0, 1} = {(s1, s2, s3, . . . ) | si = 0 or 1}.



We define an onto map f : X → [0, 1] by

f(s1, s2, s3, . . . ) = 0.s1s2s3 . . . ,

where the right side is in base two. Since [0, 1] is uncountable so is X.
(This assumes every number in [0,1] has a base two expansion.)

We will next prove Theorem 6 and then use it to prove Theorem 4.

Proof of Theorem 6. Let A = {a1, a2, a3, . . . } and B = {b1, b2, b3, . . . }.
We will show that A×B is countable.

Let Cn = {(ai, bj) ∈ A×B | i + j = n}. Each Cn is finite. Since

A×B =
∞⋃
n=2

Cn

Theorem 2 shows that A × B is countable. If A or B was finite the
same argument works.

Let Ai, for i ∈ N, be countable. We know now that A1 × A2 is
countable. Suppose for some k > 1 we have that A1 × · · · × Ak is
countable. Since A1×· · ·Ak×Ak+1 is equivalent to (A1×· · ·Ak)×Ak+1

it is also countable. �

Proof of Theroem 4. Let Ai, for i ∈ N, be countably infinite. Assume
for now that they are disjoint. Let A be their union. For each i ∈ N
let

fi : N→ Ai

be a bijection. Define

h : N× N→ A by h(m,n) = fm(n).

We claim h is a bijection.
We first show that h is onto. Let x ∈ A. Then ∃ m ∈ N such that

x ∈ Am. Also, ∃ n ∈ N such that fm(n) = x, since fm is onto. Thus,
h(m,n) = x.

Next we show that h is one-to-one. Suppose h(m,n) = h(p, q). If
m 6= p, then fm(n) 6= fp(q), since Am ∩ Ap = ∅. Suppose m = p, but
n 6= q. Then fm(n) 6= fm(q), since fm is one-to-one. Thus, fm(n) 6=
fp(q). Thus, h is one-to-one and hence a bijection as claimed.

By Theorem 6 we know N× N is countable, hence A is.
Finally, we drop the assumption that the Ai are disjoint. Let A′1 = A1

and for i ≥ 2 let A′i = Ai − ∪i−1
j=1Aj. Now the A′i are disjoint and

∞⋃
i=1

Ai =
∞⋃
i=1

A′i.

Some of the A′i could be finite. If an A′i is empty it can be skipped and
the remaining ones renumbered. If an A′i is finite the map fi will now



be of the form fi : {1, 2, . . . , n} → A′i. Then h will only be defined on
a subset of N× N, but the same argument still goes through. �

The proof of Theorem 4 used, in a subtle way, something called the
Axiom of Choice. When mathematicians were first trying to formal-
ize the ideas of set theory and logic they ran into various paradoxes. To
avoid these they eventually established an axiomatic structure for set
theory. Out of several approaches the Zermelo-Fraenkel axioms became
the most popular. The following question arose. Given a collection of
nonempty sets is there a function that selects just one member of each
set? If the collection is finite one can use the Zermelo-Fraenkel axioms
to prove such a function, called a choice function, exists. But, if the
collection is infinite no one was able to show that a choice function ex-
ists. The assumption that choice functions do exist is called the Axiom
of Choice.

It is now known that the Axiom of Choice cannot be derived from
the Zermelo-Fraenkel axioms and that it cannot be contradicted by
them. It is taken as an independent axiom.

In the proof of Theorem 4 we said there exists for each i a bijection
fi : N→ Ai. But there are many such functions. For each i we had to
choose one to construct h. Hence we employed the Axiom of Choice.

Lookup the Axiom of Choice and read about the history of it.


