Ordered Fields

Definition. Let S be a set. A binary operation is a map from $S \times S$ to S.

Definition. An **ordered field** is a set \mathbb{F} with more than one member together with two binary operations, addition + and multiplication \cdot and an order relation \leq satisfying the axioms below for all a, b, and c in \mathbb{F} . (The \cdot is often left unwritten.)

A1.
$$a + (b + c) = (a + b) + c$$
.

A2.
$$a + b = b + a$$
.

A3.
$$\exists 0 \in \mathbb{F} \text{ such that } a + 0 = a.$$

A4.
$$\exists -a \in \mathbb{F}$$
 such that $a + (-a) = 0$.

M1.
$$a(bc) = (ab)c$$
.

M2.
$$ab = ba$$
.

M3.
$$\exists 1 \in \mathbb{F}$$
 such that $a \cdot 1 = a$.

M4. If
$$a \neq 0$$
, $\exists a^{-1} \in \mathbb{F}$ such that $a \cdot a^{-1} = 1$.

DL.
$$a(b+c) = ab + ac$$
.

O1. Either
$$a \leq b$$
 or $b \leq a$ is true.

O2. If
$$a \leq b$$
 and $b \leq a$, then $a = b$.

O3. If
$$a \le b$$
 and $b \le c$, then $a \le c$.

O4. If
$$a \leq b$$
, then $a + c \leq b + c$.

O5. If
$$a \leq b$$
 and $0 \leq c$, then $ac \leq bc$.

Note: Given \leq then \geq , < and > are defined as usual.

From these beginnings the following can be proven.

Theorem 3.1 Let \mathbb{F} be a field. Then $\forall a, b, c$ in \mathbb{F} the following hold.

- (i) If a + c = b + c, then a = b.
- (ii) $a \cdot 0 = 0$.
- (iii) (-a)b = -(ab).
- (iv) (-a)(-b) = ab.
- (v) If ac = bc and $c \neq 0$, then a = b.
- (vi) If ab = 0 then either a = 0 or b = 0.

Theorem 3.2 Let \mathbb{F} be an ordered field. Then $\forall a, b, c$ in \mathbb{F} the following hold.

- (i) If $a \leq b$, then $-b \leq -a$.
- (ii) If $a \le b$ and $c \le 0$, then $bc \le ac$.
- (iii) If $0 \le a$ and $0 \le b$, then $0 \le ab$.
- $(\mathbf{iv}) \ 0 \leq a^2.$
- (v) 0 < 1.
- (vi) If 0 < a, then $0 < a^{-1}$.
- (vii) If 0 < a < b, then $0 < b^{-1} < a^{-1}$.

Some Proofs.

3.1(i) If a + c = b + c, then a = b.

$$a+c=b+c$$
 is given.
 $(a+c)+(-c)=(b+c)+(-c)$ by def. of binary op.
 $a+(c+(-c))=b+(c+(-c))$ by axiom A1 applied to both sides.
 $a+0=b+0$ by A4.
 $a=b$ by A3.

3.1(ii) $a \cdot 0 = 0$.

$$a \cdot 0 = a(0+0)$$
 A3
 $a \cdot 0 = a \cdot 0 + a \cdot 0$ DL
 $a \cdot 0 + 0 = a \cdot 0 + a \cdot 0$ A3
 $0 + a \cdot 0 = a \cdot 0 + a \cdot 0$ A2
 $0 = a \cdot 0$ 3.1(i)

3.1(iii) (-a)b = -(ab).

$$\begin{array}{rcl}
0 \cdot b & = & 0 & 3.1(ii) \\
(a + (-a))b & = & 0 & A4 \\
ab + (-a)b & = & 0 & DL \\
ab + -(ab) & = & 0 & A4 \\
ab + -(ab) & = & ab + (-a)b & \text{since } 0=0 \\
-(ab) & = & (-a)b & A2 & 3.1(i)
\end{array}$$

3.1(iv) (-a)(-b) = ab.

It will be useful to first prove that -(-x) = x. Since (-x) + x = 0 and (-x) + (-(-x)) = 0, Theorem 3.1(i) implies that -(-x) = x.

$$(-a)(-b) = -(a(-b))$$
 3.1(iii)
= $-((-b)a)$ M2
= $-(-(ba))$ 3.1(iii)
= ab since $-(-x) = x \& M2$

3.1(v)
$$ac = bc \& c \neq 0 \implies a = b.$$

First, c^{-1} exists by M4.

$$(ac)c^{-1} = (bc)c^{-1}$$

 $a(cc^{-1}) = b(cc^{-1})$ M1
 $a \cdot 1 = b \cdot 1$ M4
 $a = b$ M3

3.1(vi)
$$ab = 0 \implies a = 0 \text{ or } b = 0.$$

Let ab = 0 and suppose $a \neq 0$ and $b \neq 0$. Thus, a^{-1} and b^{-1} exist.

$$ab(b^{-1}) = 0 \cdot b^{-1}$$

 $a(bb^{-1}) = 0$ M1 & 3.1(ii)
 $a \cdot 1 = 0$ M4
 $a = 0$ M3

But a=0 contradicts our supposition. Thus, if ab=0 then a=0 or b=0.

3.2(i)
$$a \le b \implies -b \le -a$$
.

$$\begin{array}{rcl} a & \leq & b & \text{given} \\ a + ((-a) + (-b)) & \leq & b + ((-a) + (-b)) & \text{O4} \\ (a + (-a)) + (-b) & \leq & b + ((-b) + (-a)) & \text{A1 \& A2} \\ 0 + (-b) & \leq & (b + (-b)) + (-a) & \text{A4 \& A1} \\ -b & \leq & 0 + (-a) & \text{A3 \& A4} \\ -b & \leq & -a & \text{A3} \end{array}$$

3.2(ii)
$$a \le b \& c \le 0 \implies bc \le ac$$
.

I'll need to use that -0 = 0 so I'll prove that first.

(i)
$$0 + (-0) = 0$$
 by A4.

(ii)
$$0 = 0 + 0$$
 by A3.

$$(i)\&(ii) \implies 0 + (-0) = 0 + 0.$$

Thus,
$$-0 = 0$$
 by Thm 3.1(i).

Assume $a \le b$ and $c \le 0$. Since $c \le 0$, 3.2(i) implies $-0 \le -c$. Thus, $0 \le -c$.

$$\begin{array}{cccc} a(-c) & \leq & b(-c) & \text{O5} \\ -(ac) & \leq & -(bc) & \text{M2,3.1(iii),M2} \\ bc & \leq & ac & 3.2(\text{i}) \end{array}$$

$$\mathbf{3.2(iii)} \ 0 \le x \ \& \ 0 \le y \implies 0 \le xy.$$

Apply O5 with a = 0, b = x and c = y.

3.2(iv)
$$0 \le a^2$$
.

Either $a \leq 0$ or $0 \leq a$ by O1.

Suppose $0 \le a$. Then $0 \le a^2$ by O5 and Thm 3.1(ii).

Suppose $a \le 0$. By 3.2(i) we have $0 \le -a$. Thus, $0 \le (-a)^2$.

Since $(-a)^2 = a^2$ by 3.1(iv) we have $0 \le a^2$.