
Ordered Fields

Definition. Let S be a set. A binary operation is a map from
S × S to S.

Definition. An ordered field is a set F with more than one member
together with two binary operations, addition + and multiplication ·
and an order relation ≤ satisfying the axioms below for all a, b, and c
in F. (The · is often left unwritten.)

A1. a + (b + c) = (a + b) + c.
A2. a + b = b + a.
A3. ∃0 ∈ F such that a + 0 = a.
A4. ∃ −a ∈ F such that a + (−a) = 0.
M1. a(bc) = (ab)c.
M2. ab = ba.
M3. ∃1 ∈ F such that a · 1 = a.
M4. If a 6= 0, ∃a−1 ∈ F such that a · a−1 = 1.
DL. a(b + c) = ab + ac.
O1. Either a ≤ b or b ≤ a is true.
O2. If a ≤ b and b ≤ a, then a = b.
O3. If a ≤ b and b ≤ c, then a ≤ c.
O4. If a ≤ b, then a + c ≤ b + c.
O5. If a ≤ b and 0 ≤ c, then ac ≤ bc.

Note: Given ≤ then ≥, < and > are defined as usual.

From these beginnings the following can be proven.



Theorem 3.1 Let F be a field. Then ∀ a, b, c in F the following
hold.

(i) If a + c = b + c, then a = b.
(ii) a · 0 = 0.

(iii) (−a)b = −(ab).
(iv) (−a)(−b) = ab.
(v) If ac = bc and c 6= 0, then a = b.

(vi) If ab = 0 then either a = 0 or b = 0.

Theorem 3.2 Let F be an ordered field. Then ∀ a, b, c in F the
following hold.

(i) If a ≤ b, then −b ≤ −a.
(ii) If a ≤ b and c ≤ 0, then bc ≤ ac.
(iii) If 0 ≤ a and 0 ≤ b, then 0 ≤ ab.
(iv) 0 ≤ a2.
(v) 0 < 1.

(vi) If 0 < a, then 0 < a−1.
(vii) If 0 < a < b, then 0 < b−1 < a−1.



Some Proofs.
3.1(i) If a + c = b + c, then a = b.

a + c = b + c is given.
(a + c) + (−c) = (b + c) + (−c) by def. of binary op.
a + (c + (−c)) = b + (c + (−c)) by axiom A1 applied to both sides.

a + 0 = b + 0 by A4.
a = b by A3.

3.1(ii) a · 0 = 0.

a · 0 = a(0 + 0) A3
a · 0 = a · 0 + a · 0 DL

a · 0 + 0 = a · 0 + a · 0 A3
0 + a · 0 = a · 0 + a · 0 A2

0 = a · 0 3.1(i)

3.1(iii) (−a)b = −(ab).

0 · b = 0 3.1(ii)
(a + (−a))b = 0 A4
ab + (−a)b = 0 DL
ab +−(ab) = 0 A4
ab +−(ab) = ab + (−a)b since 0=0

−(ab) = (−a)b A2 & 3.1(i)

3.1(iv) (−a)(−b) = ab.

It will be useful to first prove that −(−x) = x. Since (−x) + x = 0
and (−x) + (−(−x)) = 0, Theorem 3.1(i) implies that −(−x) = x.

(−a)(−b) = −(a(−b)) 3.1(iii)
= −((−b)a) M2
= −(−(ba)) 3.1(iii)
= ab since − (−x) = x& M2



3.1(v) ac = bc & c 6= 0 =⇒ a = b.

First, c−1 exists by M4.

(ac)c−1 = (bc)c−1

a(cc−1) = b(cc−1) M1
a · 1 = b · 1 M4

a = b M3

3.1(vi) ab = 0 =⇒ a = 0 or b = 0.

Let ab = 0 and suppose a 6= 0 and b 6= 0. Thus, a−1 and b−1 exist.

ab(b−1) = 0 · b−1

a(bb−1) = 0 M1 & 3.1(ii)
a · 1 = 0 M4

a = 0 M3

But a = 0 contradicts our supposition. Thus, if ab = 0 then a = 0
or b = 0.

3.2(i) a ≤ b =⇒ −b ≤ −a.

a ≤ b given
a + ((−a) + (−b)) ≤ b + ((−a) + (−b)) O4
(a + (−a)) + (−b) ≤ b + ((−b) + (−a)) A1 & A2

0 + (−b) ≤ (b + (−b)) + (−a) A4 & A1
−b ≤ 0 + (−a) A3 & A4
−b ≤ −a A3



3.2(ii) a ≤ b & c ≤ 0 =⇒ bc ≤ ac.

I’ll need to use that −0 = 0 so I’ll prove that first.

(i) 0 + (−0) = 0 by A4.

(ii) 0 = 0 + 0 by A3.

(i)&(ii) =⇒ 0 + (−0) = 0 + 0.

Thus, −0 = 0 by Thm 3.1(i).

Assume a ≤ b and c ≤ 0. Since c ≤ 0, 3.2(i) implies −0 ≤ −c. Thus,
0 ≤ −c.

a(−c) ≤ b(−c) O5
−(ac) ≤ −(bc) M2,3.1(iii),M2

bc ≤ ac 3.2(i)

3.2(iii) 0 ≤ x & 0 ≤ y =⇒ 0 ≤ xy.

Apply O5 with a = 0, b = x and c = y.

3.2(iv) 0 ≤ a2.

Either a ≤ 0 or 0 ≤ a by O1.

Suppose 0 ≤ a. Then 0 ≤ a2 by O5 and Thm 3.1(ii).

Suppose a ≤ 0. By 3.2(i) we have 0 ≤ −a. Thus, 0 ≤ (−a)2.

Since (−a)2 = a2 by 3.1(iv) we have 0 ≤ a2.


