Summary of the properties of limits of functions of a real variable

Finite Limit Laws. Let c and a be a real numbers (constants). Assume that $\lim_{x\to a} f(x)$ and $\lim g(x)$ exist and are finite. Then the following hold.

- (1) $\lim c = c$.
- (2) $\lim x = a$.
- (3) $\lim_{x \to a} c f(x) = c \lim_{x \to a} f(x).$ (4) $\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x).$
- (5) $\lim_{x \to a} f(x)g(x) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right).$ (6) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ provided $\lim_{x \to a} g(x) \neq 0.$
- (7) $\lim_{x \to a} (f(x))^c = \left(\lim_{x \to a} f(x)\right)^c$, unless $\lim_{x \to a} f(x) = 0$ and c < 0.

Analogous statements are true if we replace $x \to a$ with $x \to a^+$, $x \to a^-$ or $x \to \pm \infty$. **Infinite Limit Laws.** Let $a, L \neq 0$ and $c \neq 0$ be real constants. Let p,q, n, z, zfunctions such that $\lim_{x\to a} p(x) = \infty$, $\lim_{x\to a} q(x) = \infty$, $\lim_{x\to a} z(x) = 0$ and $\lim_{x\to a} k(x) = L$. Then the following hold.

- (2) $\lim_{x \to a} p(x) \pm k(x) = \infty$

- (4) $\lim_{x \to a} p(x)q(x) = \infty$ (6) $\lim_{x \to a} cp(x) = \operatorname{sign}(c) \infty$
- (1) $\lim_{x \to a} p(x) + q(x) = \infty$ (3) $\lim_{x \to a} -p(x) \pm k(x) = -\infty$ (5) $\lim_{x \to a} -p(x)q(x) = -\infty$ (7) $\lim_{x \to a} k(x)p(x) = \operatorname{sign}(L) \infty$
 - $(8) \lim_{x \to a} \frac{1}{p(x)} = 0$
- (9) No conclusion can be drawn for $\lim_{x\to a} p(x)z(x)$ or $\lim_{x\to a} p(x) q(x)$.

Analogous statements are true if we replace $x \to a$ with $x \to a^+$, $x \to a^-$ or $x \to \pm \infty$.

The infinite limit laws may abbreviated as follows.

- $(1) \infty + \infty = \infty$
- $(2) \infty \pm L = \infty$
- $(3) -\infty \pm L = -\infty$
- $(4) \infty \cdot \infty = \infty$
- $(5) -\infty \cdot \infty = -\infty$
- $(6\&7) \ c \infty = \operatorname{sign}(c) \infty \qquad (8) \ \frac{1}{\infty} = 0$

The Removable Singularity Rule. Suppose g(x) is continuous on (a,c) and that f(x) = g(x) on an $(a, b) \cup (b, c)$. Then $\lim_{x \to b} f(x) = g(b)$.

The Composition Theorem. If $\lim_{x\to a} g(x) = P$ and $\lim_{y\to P} f(y) = L$ then $\lim_{x\to a} f(g(x)) = L$. This holds true when any of a, P or L are infinities. If f is continuous at P then this can be written as

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(L).$$

The Squeeze Theorem. Suppose $f(x) \leq g(x) \leq h(x)$ on a suitable domain. Then $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x) \le \lim_{x \to a} h(x), \text{ provided the limits exist. If } \lim_{x \to a} f(x) = L = \lim_{x \to a} h(x) \text{ then } \lim_{x \to a} g(x) = L.$ This holds when $L = \pm \infty$ and for limits as $x \to \pm \infty$ or one sided limits. (The reader should be able to determine what is meant by a *suitable domain*.)