
Series
(Sections 14 & 15)

Definition. The infinite sum is defined to
∞∑
k=p

ak = lim
n→∞

n∑
k=p

ak

when the limit exists. Usually the sum will start with k = 1
or 0.

The n-th partial sum of
∞∑
k=p

ak is sn =

p+n−1∑
k=p

ak.

Now we can write
∞∑
k=p

ak = lim
n→∞

sn when the limit exists.

Note. If we leave off the first few terms of a sequence the
limit is unaffected. This is a special case of the subsequence
theorem. If we leave off a finite number of terms of an
infinite sum, then whether it converges or not is unaffected,
but if it converges the value will be changed.

A series converges if and only if the sequence of partial
sums is Cauchy. Notice that for n > m

sn − sm =
n∑

k=m+1

an.

We say a series satisfies the Cauchy criteria if ∀ ε > 0, ∃
N ∈ N s.t.

n ≥ m > N =⇒
∣∣∣ n∑
k=m

ak

∣∣∣ < ε.

Thus, a series converges if and only if it satisfies the Cauchy
criteria. (This is Theorem 14.4 in the textbook.)



Corollary (14.5). If
∑
ak converges then ak → 0.

Proof. Let ε > 0. ∃ N ∈ N s.t.

n ≥ m > N =⇒

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε.

Thus, for k > N we have |ak| < ε by using n = m = k.
Thus, ak → 0.

Example. (This is Exercise 4.14 in your textbook.)
∞∑
n=1

1
n =∞.

Proof. Let sm =
m∑
n=1

1
n . We will show sm → ∞. Consider

the subsequence (smk
)∞k=1 where mk = 2k.

We will use induction to prove that smk
≥ 1 + k

2 for all

k ∈ N. First notice that sm1
= s2 = 1 + 1

2 . Suppose,

smk−1
≥ 1 + k−1

2 for some k > 1. Now,

smk
=
(
1 + 1

2 + 1
3 + · · ·+ 1

2k−1

)
+
(

1
2k−1+1

+ · · ·+ 1
2k

)
.

Each pair of parentheses has 2k−1 terms. In fact the sum in
the first pair is smk−1

. Each term in the second pair before
the last term is greater than the last term. Thus,

smk
≥ smk−1

+ 2k−1 ·
(

1
2k

)
= smk−1

+ 1
2 .

By the induction hypothesis smk−1
≥ 1 + k−1

2 . Thus,

smk
≥ 1 + k−1

2 + 1
2 = 1 + k

2 .

Since 1 + k/2 → ∞ we have that smk
→ ∞. Thus (sm)

cannot converge. To show it diverges to infinity we use the
fact that (sm) is increasing since all the 1

n are positive. Let



B > 0. ∃ K ∈ N s.t.

k ≥ K =⇒ smk
> B.

Thus,

m ≥ mk =⇒ sm ≥ smk
> B.

Thus, sm →∞. �

Definitions. A series
∑
ak is called alternating if ak+1

always has the opposite sign of ak. They come up in many
applications. Consider a series

∑
an. If

∑
|an| converges

we say the series is absolutely convergent. We will see
below that if

∑
|an| converges then so does

∑
an. If

∑
an

converges but
∑
|an| does not we say the series is condi-

tionally convergent.

There is a slew of tests for convergence. We will run
through these and prove a few of them.

The Direct Comparison Test. (14.6) Assume an ≥ 0
for all n ∈ N.

(a) If
∑
an converges (to a finite real number) and |bn| ≤

an ∀n ∈ N, then
∑
bn converges (to a finite real

number ≤
∑
an).

(b) If
∑
an =∞ and bn ≥ an ∀n ∈ N, then

∑
bn =∞.

(c) Both (a) and (b) hold true if “∀n ∈ N” is replaced
by “∀n > K for some K ∈ N”.

Proof of (a). Let ε > 0. Let N be s.t. n ≥ m > N implies
n∑

k=m

ak < ε. Then∣∣∣∣∣
n∑

k=m

bk

∣∣∣∣∣ ≤
n∑

k=m

|bk| ≤
n∑

k=m

ak < ε.



You do (b) and (c). �

Note. A special case of (a) is that if
∑
|an| converges

then so does
∑
an.

Theorem. Assume
∑
an and

∑
bb converge and let c ∈

R. Then
(i)
∑
can = c

∑
an, and

(ii)
∑
an + bn =

∑
an +

∑
bn.

Proofs are easy and left to you. Note that if
∑
an diverges

and c 6= 0, then
∑
can diverges too.

The Limit Comparison Test. (Not in your textbook.)
Let

∑
an and

∑
bn be series with positive terms. If

lim
n→∞

an
bn

= L ∈ (0,∞),

then
∑
an and

∑
bn either both converge or both diverge.

Proof. Let ε = L/2. Then ∃ N s.t.

n > N =⇒ L

2
<
an
bn

<
3L

2
.

Thus,
Lbn
2

< an <
3Lbn

2
.

If
∑
bn converges, then so do

∑
Lbn/2 and

∑
3Lbn/2.

Thus,
∑
an converges by the Direct Comparison Test (c).

If a positive term series diverges, it diverges to infinity.
If
∑
bn diverges to ∞ , then so does

∑
Lbn/2. By the

Direct Comparison Test
∑
an diverges too.

The other two implications follow logically from these or
note that lim

n→∞
bn/an = 1/L ∈ (0,∞). �



Alternating Series Test. Assume an is nonnegative
and nonincreasing for all n; that is

0 ≤ an+1 ≤ an, ∀n ∈ N.

If an → 0, then the alternating series
∞∑
n=1

(−1)n+1an con-

verges.

Idea of the proof. See the figure below. It is a bar graph

of the partial sums, sm =
m∑

n=1

(−1)n+1an. Notice that the

subsequence of odd terms is decreasing and bounded below
while the even terms are increasing and bounded above. I’ll
discuss it in class.
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Proof. Let sm =
∑m

n=1(−1)n+1an. Consider the subsequences
(s2k) and (s2k−1). We will show that following.

(*) The (green) subsequence (s2k) is nondecreasing and
bounded above. Hence it has a limit Le.



(**) The (pink) subsequence (s2k−1) is nonincreasing and
bounded below. Hence it has a limit Lo.
(***) Finally, we show Le = Lo and that this is the limit of
(sm).

(*) s2(k+1)−s2k = −a2k+2+a2k+1 ≥ 0 implies s2(k+1) ≥ s2k.
Thus, (s2k) is nondecreasing. We claim s2k ≤ a1 for all k.
We write

s2k = a1 − a2 + a3 − a4 + a5 − · · · − a2k−2 + a2k−1 − a2k

= a1 − (a2 − a3)− (a4 − a5)− · · · − (a2k−2 − a2k−1)− a2k.
All the terms in parentheses are positive or zero as is the
last term. Hence, s2k ≤ a1.

(**) s2(k+1)−1−s2k−1 = a2k+1−a2k ≤ 0 implies s2(k+1)−1 ≤
s2k−1. Thus, (s2k−1) is nonincreasing. We claim s2k−1 ≥
a1 − a2 for all k. We write

s2k−1 = a1 − a2 + a3 − a4 + a5 − a6 · · · a2k−3 − a2k−2 + a2k−1

= a1−a2+(a3−a4)+(a5−a6)+· · ·+(a2k−3−a2k−2)+a2k−1.

All the terms in parentheses are positive or zero as is the
last term. Hence, s2k−1 ≥ a1 − a2.

(***) We compute Le − Lo =

lim
k→∞

s2k − lim
k→∞

s2k−1 = lim
k→∞

s2k − s2k−1 = lim
k→∞
−a2k = 0.

Hence Le = Lo. Let L = Le.
Let ε > 0. ∃N s.t. for k > N we have |s2k − L| < ε and
|s2k−1−L| < ε. Hence for and n > 2N we have |sn−L| < ε.
Thus sn → L which is to say

∞∑
n=1

(−1)n+1an = L.

�



Examples.

The series
∞∑
n=1

(−1)n+1 1
n converges. It can be shown that

the limit is ln 2.

The series
∞∑
n=1

(−1)n+1 1
n2 converges. It can be shown that

the limit is π2/12.

Geometric Series Test. A series of the form
∑
ark is

called a geometric series.
(i) If r 6= 1, then

n∑
k=0

ark = a
1− rn+1

1− r
.

(ii) If |r| < 1, then

∞∑
k=0

ark =
a

1− r
.

Proof. You have done this. �

We did some examples in class.

Ratio Test. [This version is the one given in most cal-
culus textbooks. Your textbook gives a jazzed up version
that is covered in 452.] Let

∑
an be an infinite series of

nonzero terms.

(i) If lim
n→∞

|an+1|
|an|

= L < 1, then
∑
an converges abso-

lutely.

(ii) If lim
n→∞

|an+1|
|an|

= L > 1, then
∑
an diverges.



Proof. The idea is to use apply the Direct Comparison The-
orem using a geometric series.

(i) ∃ r ∈ R s.t. L < r < 1. Let ε = r−L. Now, ∃N ∈ N
s.t. n ≥ N implies ∣∣∣∣∣∣∣∣an+1

an

∣∣∣∣− L∣∣∣∣ < ε.

Thus,

−(r − L) <

∣∣∣∣an+1

an

∣∣∣∣− L < r − L.

Thus, ∣∣∣∣an+1

an

∣∣∣∣ < r.

Thus,

|an+1| < |an|r, ∀n ≥ N.

By induction,

|aN+k| < |aN |rk, ∀k ∈ N.

By the Geometric Series Test∑
|aN |rk

converges since |r| < 1. By the Direct Comparison Test

∞∑
k=1

|aN+k|

converges. Therefore,

∞∑
n=1

|an|

converges.

(ii) Similar. �



Example. The series
∞∑
n=0

1

n!
converges.

Proof. We use the Ratio Test.

1
(n+1)!

1
n!

=
1

n+ 1
→ 0 < 1.

�

Later we will show that
∞∑
n=0

1

n!
= e.

Root Test. [This version is the one given in most cal-
culus textbooks. Your textbook gives a jazzed up version
that is covered in 452.] Let

∑
an be an infinite series.

(i) If lim
n→∞

n
√
|an| = L < 1, then

∑
an converges abso-

lutely.

(ii) If lim
n→∞

n
√
|an| = L > 1, then

∑
an diverges.

Proof. (i) ∃ r ∈ R s.t. L < r < 1. ∃ N ∈ N s.t. n ≥ N
implies ∣∣∣ n

√
|an| − L

∣∣∣ < r − L.

Thus,
n
√
|an| < r.

Thus,

|an| < rn.

Thus,
∞∑

n=N

|an|



converges by the Direct Comparison Test since |r| < 1. It

follows that
∞∑
n=1

an is absolutely convergent.

You can prove (ii). �

Integral Test. See textbook.

Proof. See textbook. �

p-Series Test. The infinite sum
∞∑
n=1

1

np
converges for

p > 1 and diverges to ∞ for p ≤ 1.

Proof. Use the Integral Test. See textbook. �

Examples.

∞∑
n=1

1

n2
converges. In fact it equals π2/6.

See https://en.wikipedia.org/wiki/Basel problem.

∞∑
n=1

1

n4
converges. In fact it equals π4/90.

∞∑
n=1

1

n6
converges. In fact it equals π6/945.

∞∑
n=1

1

n8
converges. In fact it equals π8/9450.

You might wonder about the odds powers. Look up the
Riemann Zeta function.


