Series
(Sections 14 & 15)

Definition. The infinite sum is defined to
[ee] n
> k= lim > ay
k=p k=p

when the limit exists. Usually the sum will start with £ =1
or 0.

o0 p+n—1
The n-th partial sum of Z ap is s, = Z ay.
k=p k=p

o0
Now we can write E ar = lim s, when the limit exists.

n—00
k=p

Note. If we leave off the first few terms of a sequence the
limit is unaffected. This is a special case of the subsequence
theorem. If we leave off a finite number of terms of an

infinite sum, then whether it converges or not is unaffected,
but if it converges the value will be changed.

A series converges if and only if the sequence of partial
sums is Cauchy. Notice that for n > m

n
Sn - Sm — E a/n.
k=m+1

We say a series satisfies the Cauchy criteria if V e > 0, 3
N € N s.t.

n>m>N — ‘Zak‘ < €.
k=m
Thus, a series converges if and only if it satisfies the Cauchy
criteria. (This is Theorem 14.4 in the textbook.)



Corollary (14.5). If > a; converges then a;, — 0.
Proof. Let e > 0. 3 N € N s.t.

n

>

k=m

n>m>N — < €.

Thus, for & > N we have |ax| < € by using n = m = k.
Thus, a; — 0.

Example. (This is Exercise 4.14 in your textbook.)

o

E l:OO.
n

n=1

m

Proof. Let s, = Z % We will show s,, — oo. Consider
n=1

the subsequence (s,,, )3, where my = 2.

+ % for all
. Suppose,

We will use induction to prove that s, >
k € N. First notice that s, = s2 = 1+
Smp_y > 1+ % for some k > 1. Now,

N[—

Smk:<1+%+%++2k171)+(2k—11+1++2%>

Each pair of parentheses has 2*~! terms. In fact the sum in
the first pair is s,,,_,. Each term in the second pair before
the last term is greater than the last term. Thus,

Smk Z Smk—l + 2k_1 ) (2%‘) = Smk—l + %
By the induction hypothesis s, , > 1+ 1“2;1 Thus,
Smpe 2 1+ 1 =144
Since 1 4+ k/2 — oo we have that s, — oo. Thus (s,,)

cannot converge. To show it diverges to infinity we use the
fact that (s,,) is increasing since all the % are positive. Let



B>0. 3K ¢eNs.t.
k>K = s, >DB.

Thus,
m>my = Sm > Sm, > B.
Thus, s,, — oc. [

Definitions. A series > ay is called alternating if aj.q
always has the opposite sign of a;. They come up in many
applications. Consider a series Y a,. If > |a,| converges
we say the series is absolutely convergent. We will see
below that if Y |a,| converges then so does > a,. If Y a,
converges but > |a,| does not we say the series is condi-
tionally convergent.

There is a slew of tests for convergence. We will run
through these and prove a few of them.

The Direct Comparison Test. (14.6) Assume a, > 0
for all n € N.

(a) If >~ a, converges (to a finite real number) and |b,| <
a, VYn € N, then Y b, converges (to a finite real
number < > ay,).

(b) If >~ a, = 0o and b, > a, VYn € N, then )b, = occ.

(c) Both (a) and (b) hold true if “Vn € N” is replaced
by “Vn > K for some K € N”.

Proof of (a). Let € > 0. Let N be s.t. n > m > N implies
Z aj, < €. Then

k=m

>
k=m

< znjlbk’ < zn:ak<€.
k=m k=m



You do (b) and (c). O

Note. A special case of (a) is that if > |a,| converges
then so does Y ay,.

Theorem. Assume ) a, and > b, converge and let ¢ €
R. Then

(i) > can, =c¢>_ ay,, and
(i) Y an+b, =D an+ > by

Proofs are easy and left to you. Note that if a,, diverges
and ¢ # 0, then ) ca,, diverges too.

The Limit Comparison Test. (Not in your textbook.)
Let > a, and >_ b, be series with positive terms. If

lim — = L € (0, 00),

n—oo n

then > a, and ) b, either both converge or both diverge.
Proof. Let ¢ = L/2. Then 3 N s.t.

>N — L < dn 3L
n —< =< —.

2 b, 2
Thus,

S < <
If > b, converges, then so do > Lb,/2 and > 3Lb,/2.
Thus, Y a, converges by the Direct Comparison Test (c).

If a positive term series diverges, it diverges to infinity.
If > b, diverges to oo , then so does > Lb,/2. By the
Direct Comparison Test ) a,, diverges too.

The other two implications follow logically from these or
note that lim b,/a, = 1/L € (0,0). O
n—oo



Alternating Series Test. Assume a, is nonnegative
and nonincreasing for all n; that is

0 S An+1 S Ay, VTL - N
(0.9]
If a, — 0, then the alternating series Z(—l)”ﬂan con-

n=1
verges.

Idea of the proof. See the figure below. It is a bar graph
of the partial sums, s, = Z(—l)”“an. Notice that the

n=1
subsequence of odd terms is decreasing and bounded below

while the even terms are increasing and bounded above. I'll
discuss it in class.
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Proof. Let s, = >, (—=1)""a,. Consider the subsequences

(s2) and (sgx—1). We will show that following.

(*) The (green) subsequence (sg;) is nondecreasing and
bounded above. Hence it has a limit L..



(**) The (pink) subsequence (s9_1) is nonincreasing and
bounded below. Hence it has a limit L.
(***) Finally, we show L. = L, and that this is the limit of

(8m)-

(*) So(k+1)—S2k = —Gop2+agps1 > 0implies so(y1) > o1
Thus, (s9x) is nondecreasing. We claim sqg, < a; for all k.
We write

Sop = QA1 — Q2 + Q3 — Q4 + a5 — *++ — A2p—2 1+ A2k—1 — A2k

= a1 — (&2 - Cl3) - (@4 - a5) - (a2k—2 - azk—1) — Q2.
All the terms in parentheses are positive or zero as is the
last term. Hence, sor < aj.

(**) So(kt1)—1—S2k—1 = Qo1 —agp < 0 implies sy 11)-1 <
Sok—1. Thus, (S9r_1) is nonincreasing. We claim sof_1 >
a1 — a9 for all k. We write

Sop—1 =Q1 — Q2+ a3 — a4+ as — ag -+ A2k—3 — A2k—2 + A2k—1

=a;—ays+ (CL3 — CL4) + (CL5 — a6) +- ot (a%_g — agk_g) +aop_1.
All the terms in parentheses are positive or zero as is the
last term. Hence, sop_1 > a1 — as.

(***) We compute L, — L, =

lim sop, — lim s9;_1 = lim S9p, — Sor_1 = lim —ag, = 0.
k—o0 k—o00 k—00 k—o00

Hence L, =L,. Let L = L..

Let € > 0. AN s.t. for k > N we have |sop — L| < € and
|sox—1—L| < €. Hence for and n > 2N we have |s, — L| < e.
Thus s, — L which is to say

> (=1)"a, = L.

n=1



Exampleié
The series Z(—l)”“% converges. It can be shown that
the Timit is Tn 2.
The series Z 1)t 12 converges. It can be shown that

the limit is 7r2/12

Geometric Series Test. A series of the form Y ar is

called a geometric series.
(i) If r # 1, then

n 1 — n+1
Z arf = g=—"
1—r
k=0
(ii) If |r| < 1, then
S -
k=0
Proof. You have done this. O

We did some examples in class.

Ratio Test. [This version is the one given in most cal-
culus textbooks. Your textbook gives a jazzed up version
that is covered in 452.] Let ) a, be an infinite series of
nonzero terms.

(i) If lim | = L < 1, then ) a, converges abso-

00 |an]

lutely.

(i) If lim 011} = L > 1, then ) a, diverges.

n—00 | ay,|



Proof. The idea is to use apply the Direct Comparison The-
orem using a geometric series.

(i)dreRst. L<r<1. Lete=r—L. Now,IN €N
s.t. n > N implies

Gntl) _ Ll <e
a,, '
Thus,
—(r—1L) < Gl <L
an
Thus,
An+1 <r
Qn,
Thus,

lani1] < |an|r, Vn > N.
By induction,
lansi| < lan|r®, Vk e N.

By the Geometric Series Test

2 laxlr*

converges since |r| < 1. By the Direct Comparison Test

o0
Z ‘CLN+k|
k=1

converges. Therefore,

00
D laal
n=1

converges.

(i) Similar. O



o0
1
Example. The series Z — converges.
n!
n=0
Proof. We use the Ratio Test.
1
(n+1)!
= —0<1
1 n—+1

>~ 1
Later we will show that Z —=e
n!

n=0

Root Test. [This version is the one given in most cal-
culus textbooks. Your textbook gives a jazzed up version
that is covered in 452.] Let Y a, be an infinite series.

(i) If lim {/|a,] = L < 1, then > a, converges abso-
n—oo
lutely.

(i) If lim +/|a,| = L > 1, then ) a, diverges.

n—oo

Proof. (i) 3reRst. L<r<1l. 3N eNst. n>N

implies
an] — L‘ <r—1L
Thus,
Van| < r.
Thus,
a,| < r".
Thus,

> lal

n=N



converges by the Direct Comparison Test since |r| < 1. It

(0.9]
follows that Z a, is absolutely convergent.

n=1

You can prove (ii). O

Integral Test. See textbook.
Proof. See textbook. ]

(0.9]
1
p-Series Test. The infinite sum E — converges for
n
n=1

p > 1 and diverges to oo for p < 1.
Proof. Use the Integral Test. See textbook. ]

Examples.

o

1

g — converges. In fact it equals 72 /6.
n

n=1

See https://en.wikipedia.org/wiki/Basel problem.

o

1

E —; converges. In fact it equals 71/90.
n

n=1

oo

1

E — converges. In fact it equals 70 /945.
n

n=1

o

1

E —; converges. In fact it equals 7°/9450.
n

n=1

You might wonder about the odds powers. Look up the
Riemann Zeta function.



