
Subsequences

Section 11 deals with subsequences. We will only touch
on this section lightly. The main facts you need to know
are given below. The rest you can read on your own.

[Theorem 11.3.] A subsequence of a convergent sequence converges
to the same limit. This is also true if the parent
sequence diverges to ∞ or −∞.

[Theorem 11.2.] If a sequence has a cluster point, then there is a sub-
sequence that converges to it.

[Theorem 11.5.] This is the famed Bolzano-Weierstrass Theorem. Ev-
ery bounded sequence has a convergent subsequence.

Example. Let (an) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . ). Then
(a2n) = (2, 4, 6, 8, 10, 12, 14, . . . ) is a subsequence.

Definition. Let a : N → R be given. Then as usual we
let an = a(n) and write (an)

∞
n=1 for the sequence. Now let

σ : N → N be an increasing function. Then a(σ(k)) maps N
into R determines a subsequence. It is commonly written
as (ank

)∞k=1
.

Examples. Let (an) be a sequence.
Let nk = 2k. This give the subsequence (a2, a4, a6, . . . ).
Let nk = 2k−1. This gives the subsequence (a1, a3, a5, . . . ).
Let nk = k2+13. This gives the subsequence (a14, a17, a22, a29, . . . ).
Let nk = k!. This gives the subsequence (a1, a2, a6, a24, a120, . . . ).



Theorem. (11.3) If lim
n→∞

an = L then lim
k→∞

ank
= L for

any subsequence.

Proof. We will only prove this for L ∈ R although the result
holds if L = ±∞. Let ǫ > 0.

∃N s.t. n > N implies |an − L| < ǫ.

∃K s.t. k > K implies nk > N .

Thus, for k > K we have |ank
− L| < ǫ.

Hence lim
k→∞

ank
= L. �



Theorem. (Similar to 11.2) Let (an) be a sequence
and let c ∈ R be a cluster point. Then there is a subse-
quence (ank

) that converges to c.

Proof. Recall the definition of a cluster point: A number
c ∈ R is a cluster point of (an) if ∀ ǫ > 0 and ∀N ∈ N

∃n > N such that
|an − c| < ǫ.

We shall construct a subsequence as follows.

Let ǫ = 1. Then ∃n1 ∈ N s.t. |an1
− c| < 1.

Let ǫ = 1

2
. Then ∃n2 > n1 in N s.t. |an2

− c| < 1

2
.

Let ǫ = 1

3
. Then ∃n3 > n2 in N s.t. |an3

− c| < 1

3
.

Let ǫ = 1

4
. Then ∃n4 > n3 in N s.t. |an4

− c| < 1

4
.

Continue is this way. Once nk > nk−1 has been chosen
such that |ank

− c| < 1

k
then we can choose nk+1 > nk such

that |ank+1
− c| < 1

k+1
.

Thus, we have a subsequence (ank
)∞k=1

. Now we show
ank

→ c. Let ǫ > 0 be arbitrarily chosen. Let K ∈ N be
s.t. K > 1/ǫ. Then for all k > K we have

|ank
− c| < 1/k < 1/K < ǫ.

Thus, ank
→ c. �



The Bolzano-Weierstrass Theorem (11.5). Every
bounded infinite sequence of real numbers has a convergent
subsequence.

Proof. Let (an) be an infinite sequence of real numbers
bounded by M > 0, that is |an| < M for all n ∈ N.

Let I1 = [−M, 0] and I2 = [0,M ].
Let I11 = [−M,−M/2], I12 = [−M/2, 0], I21 = [0,M/2]
and I22 = [M/2,M ].
Continuing, let I111 = [−M,−3M/4], I112 = [−3M/4,−M/2],
etc.
Continue this process indefinitely.

M−M 0−M
2

M
2

At least one of I1 and I2 contains an for infinitely many
n. Say is it Ii. Let n1 be the smallest natural number s.t.
an1

∈ Ii.

At least one of Ii1 and Ii2 contains an for infinitely many
n. Say is it Iij. Let n2 be the smallest natural number
greater than n1 s.t. an2

∈ Iij.

At least one of Iij1 and Iij2 contains an for infinitely many
n. Say is it Iijk. Let n3 be the smallest natural number
greater than n2 s.t. an3

∈ Iijk.

This process can be continued indefinitely to generate a
subsequence (ank

). We claim it is Cauchy. Let ǫ > 0.



∃ p s.t. 2M · 2−p < ǫ. Let Ii1i2i3···ip be the interval that
contains ank

for all k ≥ p. Then the distance between any
two of these is less than 2M ·2−p which is less that ǫ. Thus,
we have found a subsequence that is Cauchy.

Thus (ank
) converges. Note that its limit will be a cluster

point of (an). �

Note. The limit of (xnk
) is in [−M,M ]. Proof. Suppose

xnk
→ c > M . Let ǫ = (M − c)/2. Then xnk

is never in
(c− ǫ, c+ ǫ). A similar contradiction arises if c < −M .


