
Uniform Continuity
Section 19

Definition. Let f : D → R, Then f is uniformly
continuous on D if ∀ǫ > 0, ∃δ > 0 s.t.

x, y ∈ D& |x− y| < δ =⇒ |f(x)− f(y)| < ǫ.

Example. Let f : R → R be given by f(x) = 7x + 5.
Then f is uniformly continuous on R.

Proof. Let ǫ > 0 be given. Choose δ = ǫ/7. Suppose
|x− y| < δ. Then

∣

∣(7x+ 5)− (7y + 5)
∣

∣ = 7|x− y| < 7δ = ǫ.

�

Exercise. In the space below show that g(x) = 14− 3x
is uniformly continuous on R.

Example. Let f : (0,∞) → R be given by f(x) =
1/x. Then f is continuous on (0,∞) but not uniformly
continuous on (0,∞).

Proof. We know from Theorem 17.4 (iii) that f is continu-
ous on (0,∞). To show f is not uniformly continuous on
(0,∞) we will establish the negation of the definition:

∃ ǫ > 0 s.t. ∀δ > 0, ∃ x, y ∈ (0,∞) with |x−y| < δ, but |f(x)−f(y)| ≥ ǫ.

Let ǫ = 1. Let δ > 0.



Idea! I’ll let x = δ and y be somewhere in between 0
and x. Clearly, |x − y| < δ. I can then make |1/x − 1/y|
large by moving y near to 0. I want this gap to be bigger
than 1, so I’ll use 1/y = 1/δ + 3. See figure below.
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To see why the last <
is true notice: 0 < δ
=⇒ 3δ2 < δ+3δ2 =⇒
3δ2
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< δ.
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∣
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Example. We show that f(x) = 1/x is uniformly con-
tinuous on [1,∞).

Proof. Let ǫ > 0. Pick δ = ǫ. Suppose |x− y| < δ. Then
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∣
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∣

∣

∣
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∣
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∣
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Exercise. In the space below prove that f(x) = 1/x2 is
uniformly continuous on [4,∞).

Exercise. In the space below prove that f(x) = x2 is not
uniformly continuous on R, but is uniformly continuous on
any bounded interval.



Theorem (19.2). If f is continuous on [a, b], then it is
uniformly continuous on [a, b].

Proof. Suppose f is continuous, but not uniformly contin-
uous on [a, b]. Then

∃ ǫ > 0 s.t. ∀ δ > 0, ∃ x, y ∈ [a, b] with |x−y| < δ, but |f(x)−f(y)| ≥ ǫ.

Fix such an ǫ > 0.

Then ∀n ∈ N, ∃ xn, yn ∈ [a, b] with |xn − yn| < 1/n, but
|f(xn)− f(yn)| ≥ ǫ.

Consider the sequence, (xn). By the Bolzano-Weierstrass
Theorem there is a convergent subsequence. Suppose xnk

→
c ∈ [a, b].

We claim the corresponding subsequence of (yn) con-
verges to the same value, that is ynk

→ c. Proof. Let
η > 0. (That is the Greek letter eta.) Let K be s.t. k > K
implies |xnk

− c| < η/2 and 1/nk < η/2. Then

|ynk
−c| = |ynk

−xnk
+xnk

−c| ≤ |ynk
−xnk

|+|xnk
−c| < η/2+η/2 = η.

Since f is continuous f(xnk
) → f(c) and f(ynk

) → f(c).
Thus,

|f(xnk
)− f(ynk

)| → |f(c)− f(c)| = 0.

But, this is impossible since for all k we know

|f(xnk
)− f(ynk

)| ≥ ǫ.

�

Recall. We defined f to be continuous at x if xn → x
=⇒ f(xn) → f(x). We also know that convergent se-
quences are Cauchy and vice versa. So, you might think the
continuous image of a Cauchy sequence would be Cauchy.
But this is not true. Let f(x) = 1/x on (0,∞). The se-
quence xn = 1/n is Cauchy, but f(xn) = n is certainly not



Cauchy. Of course the problem is f is not continuous at 0.
However, we do have the following theorem.

Theorem (19.4). Let f be uniformly continuous on
D. Let (xn) be a Cauchy sequence in D. Then (f(xn)) is
Cauchy.

Proof. Let ǫ > 0.
∃ δ > 0 s.t. |x− y| < δ implies |f(x)− f(y)| < ǫ.
∃N s.t. m,n > N implies |xn − xm| < δ.
Thus, m,n > N implies |f(xn)− f(xm)| < ǫ. �

Definition. Let f : A → R and A ⊂ B. If g : B → R

is s.t. g(a) = f(a) ∀ a ∈ A, then g is an extension of
f . If f is continuous and g is also continuous, then g is a
continuous extension of f .

Example. Let f(x) = sinx

x
on R − {0}. Let g : R → R

be

g(x) =

{

f(x) for x 6= 0
1 for x = 0.

It can be shown that g is continuous on R, hence g is a
continuous extension of f .

Example. Let f(x) = 1/x on R−{0}. Then there is no
continuous extension of f on R.

Example. Let f(x) = x
3+3x2−4x−12

x2−4
on (−2, 2). Does f

have a continuous extension on [−2, 2]?

Answer. Yes! Notice, f(x) = x + 3. Define g(x) on [−2, 2]
to be x+ 3. Then g is a continuous extension of f . �



Theorem (19.5). Let f : (a, b) → R be uniformly con-
tinuous on (a, b). Then f has a unique continuous extension
on [a, b].

Outline of Proof. 1. Let (an) be a sequence in (a, b) that
converges at a. Show (f(an)) converges and let ya = lim

n→∞
f(an).

2. Likewise, let yb = lim
n→∞

f(bn) for a sequence (bn) in

[a, b] that converges to b.

3. Define

g(x) =







ya for x = a
f(x) for x ∈ (a, b)
yb for x = b.

4. Show that g is continuous on [a, b].
5. Show that any other choice for the values for g(x) at

x = a and x = b would not give a continuous function. �


