Uniform Continuity
Section 19

Definition. Let f : D — R, Then f is uniformly
continuous on D if Ve > 0, 30 > 0 s.t.

ryeD&lr—yl<d = [f(z) - f(y)] <e

Example. Let f : R — R be given by f(x) = 7Tx + 5.
Then f is uniformly continuous on R.

Proof. Let ¢ > 0 be given. Choose § = €/7. Suppose
|z —y| < . Then

(72 4+5) = (Ty+5)| =Tz —y| < Td =
O

Exercise. In the space below show that g(x) = 14 — 3x
is uniformly continuous on R.

Example. Let f : (0,00) — R be given by f(z) =
1/x. Then f is continuous on (0,00) but not uniformly
continuous on (0, 00).

Proof. We know from Theorem 17.4 (iii) that f is continu-
ous on (0,00). To show f is not uniformly continuous on
(0, 00) we will establish the negation of the definition:

de>0 s.t. V0 >0, Jz,y € (0,00) with |[z—y| <, but |f(z)—f(y)| > e.
Let e = 1. Let 6 > 0.



Idea! T'll let x = 0 and y be somewhere in between 0
and x. Clearly, | —y| < d. I can then make |1/x — 1/y]
large by moving y near to 0. I want this gap to be bigger
than 1, so I'll use 1/y = 1/ + 3. See figure below
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Example. We show that f(z) = 1/x is uniformly con-
tinuous on [1,00).
Proof. Let € > 0. Pick § = €. Suppose | — y| < §. Then
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Exercise. In the space below prove that f(z) = 1/2? is
uniformly continuous on [4, c0).

Exercise. In the space below prove that f(x) = 2?2 is not

uniformly continuous on R, but is uniformly continuous on
any bounded interval.



Theorem (19.2). If f is continuous on [a, b], then it is
uniformly continuous on [a, b].

Proof. Suppose f is continuous, but not uniformly contin-
uous on |[a,b]. Then

Jde>0 s.t. V6>0, Jz,y € [a,b] with |x—y| < J, but |f(x)—f(y)| > e.

Fix such an € > 0.

Then Vn € N, 3 x,,y, € [a,b] with |z, — y,| < 1/n, but
[f(xn) = fyn)| = €

Consider the sequence, (z,). By the Bolzano-Weierstrass
Theorem there is a convergent subsequence. Suppose x,, —
c € [a,b].

We claim the corresponding subsequence of (y,) con-
verges to the same value, that is y,, — c. Proof. Let
n > 0. (That is the Greek letter eta.) Let K bes.t. k> K
implies |x,, —¢| <n/2 and 1/n; < n/2. Then

‘ynk_cl — |ynk_xnk+xnk_cl S |yn}c_$nk|+|xnk_c| < 77/2+77/2 =1

Since f is continuous f(z,,) — f(c) and f(y,,) — f(c).
Thus,

[f(@n) = f ()| = 1 (c) = fle)] = 0.

But, this is impossible since for all £ we know

\f(zn,) — fyn,)] > €.
]

Recall. We defined f to be continuous at z if x, — «x
—  f(z,) — f(x). We also know that convergent se-
quences are Cauchy and vice versa. So, you might think the
continuous image of a Cauchy sequence would be Cauchy.
But this is not true. Let f(z) = 1/x on (0,00). The se-
quence z,, = 1/n is Cauchy, but f(z,) = n is certainly not



Cauchy. Of course the problem is f is not continuous at 0.
However, we do have the following theorem.

Theorem (19.4). Let f be uniformly continuous on
D. Let (z,) be a Cauchy sequence in D. Then (f(z,)) is
Cauchy.

Proof. Let € > 0.
30 > 0s.t. |x —y| <0 implies |f(z) — f(y)| < e.
AN s.t. m,n > N implies |z, — x,,| <.
Thus, m,n > N implies |f(z,) — f(zn)| < €. O

Definition. Let f: A —>Rand AC B. If g: B—> R
is s.t. g(a) = f(a) Va € A, then g is an extension of
f. If fis continuous and g is also continuous, then g is a
continuous extension of f.

Example. Let f(z) =222 on R — {0}. Let g: R > R

. @) for x#0
e or e
g(x) :{ 1 for x=0.

It can be shown that ¢ is continuous on R, hence g is a
continuous extension of f.

Example. Let f(z) =1/x on R—{0}. Then there is no
continuous extension of f on R.

Example. Let f(z) = £335-4-12 on (_9 9) Does f

x2—4
have a continuous extension on [—2, 2|?

Answer. Yes! Notice, f(z) = x + 3. Define g(z) on [—2, 2]
to be z 4+ 3. Then g is a continuous extension of f. [



Theorem (19.5). Let f : (a,b) — R be uniformly con-
tinuous on (a, b). Then f has a unique continuous extension
on [a, b|.

Outline of Proof. 1. Let (a,) be a sequence in (a,b) that

b
converges at a. Show (f(a,,)) converges and let y, = lim f(a,).
n—o0

2. Likewise, let y, = lim f(b,) for a sequence (b,) in
n—oo

[a, b] that converges to b.

3. Define
Yy, for r=a

g(x) =< f(x) for z € (a,b)
y, for x =0

4. Show that ¢ is continuous on [a, b].
5. Show that any other choice for the values for g(z) at
xr = a and x = b would not give a continuous function. [



