
Integration by Substitution 1

The Chain Rule in Reverse

We develop a powerful technique for finding indefinite integrals. Suppose
F and g are known differentiable functions. Let F ′ = f , that is F is an
anti-derivative of f . Let h be defined by

h(x) = f(g(x))g′(x),

where we assume Range(g) ⊂ Dom(f). Suppose we want to find the anti-
derivative of h. Then

∫

h(x) dx =

∫

f(g(x))g′(x) dx

=

∫

F ′(g(x))g′(x) dx

=

∫

[F (g(x))]′ dx (The Chain Rule backwards!)

= F (g(x)) + C (The FTC)

Example 1. Find

∫

cos(x2)2x dx.

Solution. Let g(x) = x2, and f(x) = cos(x). Then use F (x) = sin(x) as an
anti-derivative of f(x).
∫

cos(x2)2x dx =

∫

cos(g(x))g′(x) dx

=

∫

[sin(g(x))]′ dx (The Chain Rule backwards!)

= sin(g(x)) + C (The FTC)

= sin(x2) + C
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It is easy to check that (sin(x2) + C)′ = cos(x2)2x. Of course you need
to use the Chain Rule.

Note: If we had started with
∫

x cos(x2) dx we could apply this method
as follows.

∫

x cos(x2) dx =
1

2

∫

cos(x2)2x dx = · · · = 1

2
sin(x2) + C.

Notice, we used just C and not C/2. Why is this okay?

Example 2. Find

∫

x2

√
x3 + 7

dx.

Solution. Spotting what to use for f and g is harder. Let g(x) = x3 + 7.
Then g′(x) = 3x2. Thus we write,

∫

x2

√
x3 + 7

dx =
1

3

∫

3x2

√
x3 + 7

dx =
1

3

∫

1
√

g(x)
g′(x) dx.

Now let f(x) = 1/
√
x. Then use F (x) = 2

√
x for an anti-derivative of f(x).

Then we have

1

3

∫

3x2

√
x3 + 7

dx =
1

3

∫

f(g(x))g′(x) dx

=
1

3

∫

[F (g(x))]′ dx

=
1

3
F (g(x)) + C

=
2

3

√
x3 + 7 + C

This is getting pretty tough. We will do one more example and then
develop a short cut! (Hang in there.)

Example 3. Find

∫

ex

ex + 1
dx.
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Solution. Guessing at what to use for g and f is far from obvious. But the
following will work, let g(x) = ex + 1. Then g′(x) = ex. Now let f(x) = 1/x
and use F (x) = ln |x|. Then,

∫

ex

ex + 1
dx =

∫

f(g(x))g′(x) dx

=

∫

F ′(g(x))g′(x) dx

=

∫

[F (g(x))]′ dx

= F (g(x)) + C = ln |ex + 1|+ C = ln(ex + 1) + C.

Check this by computing the derivative.

A short cut! There has got to be a better way. We are going to redo
Example 1, using somewhat different notation. Then we will point out a
short cut that has been staring at us all along. We shall use u instead of g(x)
and think of u both as a function of x and as a variable in its own right.

Example 4. Find

∫

cos(x2)2x dx.

Solution. Let u = x2. Then du

dx
= 2x. Now we compute.

∫

cos(x2)2x dx =

∫

cos(u)
du

dx
dx (1)

=

∫

d sin(u)

dx
dx (2)

= sin(u) + C = sin(x2) + C (3)

But now notice,

sin(u) + C =

∫

cos(u) du, (4)

thinking of u as a variable.
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The problem is that going from equation (1) to (2) is hard. But going
from (1) directly to (4) is easy to remember:

∫

cos(u)
du

dx
dx =

∫

cos(u) du.

The trick is to jump from (1) to (4) and then work back to (3). It is almost as
though you could cancel the dx’s. Leibniz designed the notation of calculus
just to make tricks like this work. So, we could redo this example as follows.
∫

cos(x2)2x dx =

∫

cos(u)
du

dx
dx =

∫

cos(u) du = sin(u) + C = sin(x2) + C

In fact it is common practice to abuse the notion and write “du = 2x dx”.
Then

∫

cos(x2)2x dx =

∫

cos(u) du = sin(u) + C = sin(x2) + C

Again, these are mnemonic tricks. They give mathematically correct answers
because the math in equations (1)-(4) above is valid. This method is often
referred to as u-substitution. We will formally state it as a theorem.

Theorem 1 (Substitution Theorem). Let f be a function and let u be a

differentiable function of x. Assume Range(u) ⊂ Dom(f), so that f(u(x))
is defined. Then

∫

f(u(x))
du

dx
dx =

∫

f(u) du.

One still has to guess at a good choice for the function u. You will get
better with practice. Let’s do a couple more examples.

Example 5. Find

∫ √
2x+ 4 dx.

Solution. Let u = 2x+ 4. Then du = 2 dx. Thus,
∫ √

2x+ 4 dx =
1

2

∫

2
√
2x+ 4 dx =

1

2

∫ √
u du =

1

2

2

3
u

3

2+C =
1

3
(2x+4)

3

2+C.

Note: we normally convert the result into terms of the original variable.

Example 6. Find

∫

tan x dx.
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Solution. Rewrite the integrand as sinx

cosx
. Let u = cosx. Then

∫

sin x

cos x
dx = −

∫

1

u
du = − ln |u|+ C = − ln | cos x|+ C = ln | sec x|+ C

Try using u = sin x. It can be done this way, but it is quite a bit harder.

Remark. Redo Examples 2 and 3 the short cut way. Redo Examples 4 and
5 the long way.

Example 7. Find

∫

ex + 1

ex
dx.

Solution. It is a trick question! You do not need substitution. Just divide.
∫

ex + 1

ex
dx =

∫

1 + e−x dx = x− e−x + C.

Finally we consider two examples with definite integrals. We will do each
of them two different ways.

Example 8. Find

∫ 2

0

x2(x3 + 1)3 dx.

Solution 1. Let u = x3 + 1. Then du = 3x2 dx. Thus,
∫ 2

0

x2(x3 + 1)3 dx =
1

3

∫ 2

0

3x2(x3 + 1)3 dx =
1

3

∫ ?

?

u3 du.

But, when we switch to “du” what are the end points of the integral? Using
“
∫ 2

0
” is not correct. While x starts at 0 and ends at 2, u does not. Since

u = x3 + 1, the range of u is from 1 to 9. Thus,

1

3

∫

u(2)

u(0)

u3 du =
1

3

∫ 9

1

u3 du =
1

3

1

4
u4

∣

∣

∣

∣

9

1

=
1

12
(94 − 14) = 5462

3
.

Solution 2. However, we do not have to convert the end points. If we switch
the result back in terms of x we can use the original end points.

1

3

∫ ?

?

u3 du =
1

3

1

4
u4

∣

∣

∣

∣

?

?

=
1

12
(x3 + 1)4

∣

∣

∣

∣

2

0

=
1

12
(94 − 14) = 5462

3
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Example 9. Find

∫

π

0

sin5 x cos x dx.

Solution 1. Let u = sin x. (Using u = cos x also works, but is much harder.)
Now, du = cos x dx. We get,

∫ ?

?

u5 du =
1

6
u6

∣

∣

∣

∣

?

?

=
1

6
sin6 x

∣

∣

∣

∣

π

0

=
1

6
(sin6 π − sin6 0) =

1

6
(06 − 06) = 0.

Now for the other way.

Solution 2. Since u(0) = 0 and u(π) = 0 we get

∫ 0

0

u5 du = 0.

Weird! For class discussion:
(1) What does

∫

a

a
f(x) dx really mean?

(2) Show by using symmetry that

∫

π

0

sin5 x cos x dx = 0.

Example 10. Find

∫

sec x dx.

Solution. This will require a dirty trick!

∫

secx dx =

∫

sec x · sec x+ tan x

sec x+ tan x
dx =

∫

sec2 x+ secx tan x

secx+ tan x
dx.

Notice that the drivative of the demoninator is the numerator! Let u =
sec x+ tan x. Then du = (sec x tan x+ sec2 x) dx. Therefore

∫

sec2 x+ sec x tan x

sec x+ tan x
dx =

∫

1

u
du = ln |u|+ C = ln | sec x+ tan x|+ C.

Using the methods of this section - including in the problems - we can
now integrate the six trigonometric functions. See the table below.
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∫

sin x dx = − cos x+ C
∫

cos x dx = sin x+ C

∫

tan x dx = ln | sec x|+ C
∫

cot x dx = ln | sin x|+ C

∫

sec x dx = ln | sec x+ tan x|+ C
∫

csc x dx = ln | csc x− cot x|+ C

Elementary Problems.

1.

∫

cot y dy.

2.

∫

2q − 7√
q + 4

dq.

3.

∫

sec2(6θ + π) dθ.

4.

∫

5xe3x
2

dx.

5.

∫

1

ax+ b
dx.

6.

∫

sin(αB) cos2(αB) dB.

7.

∫

cos(4x+ 2) dx.

8.

∫

tan 3u du.

9.

∫

sec2(3x)etan(3x) dx.

10.

∫

x2 + x− 2

x+ 6
dx.

11.

∫

ρ3 + 5

2ρ
dρ.
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12.

∫

4x− 6

(x2 − 3x+ 5)5
dx.

13.

∫

(x+ 2)7 dx.

14.

∫

cos β sin β dβ.

15.

∫ 1

0

(e2x + 2)2 dx.

16.

∫

c

0

3(x− c)6 dx.

17.

∫ 0.2

0.1

t3

sec t4
dt.

18.

∫ 3

−3

ex − e−x

ex + e−x
dx.

19.

∫

(6p2 + 2) 3

√

p3 + p− 1 dp.

20.

∫

0.7Hθ − 2.1

7Hθ

dHθ.

21.

∫

√

cos2 3ζ + sin2 3ζ

17.3
dζ.

Sophisticated Problems.

22.

∫

ax+ b

cx+ d
dx

23.

∫

φ sec 3φ2 tan 3φ2 dφ

24.

∫

2x

1 + 4x2
dx

25.

∫

sin3 x2 dy. Hint: this is a trick question.
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26.

∫

1√
t(1−

√
t)

dt

27.

∫

sin2 s ds. Hint: use the identity sin2 x =
1− cos 2x

2
.

28.

∫

cos4 3α dα.

29.

∫

tan4 x dx.

30.

∫

sin 3x cos 2x dx.

31.

∫

sin5 x dx.

32.

∫

secx dx. Hint: multiply by
sec x+ tan x

sec x+ tan x
.

33.

∫

cscx dx.

34.

∫

y3 − 2y2 + y − 4

y − 3
dy.

35.

∫

1

1 + cos 5θ
dθ.

36.

∫

cot4 2x csc2 2x dx.

37.

∫

cos t sin 2t dt.

38.

∫

e2x − 1

e2x + 3
dx.

39.

∫

x− 1√
x2 − 2x

dx.
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40.

∫

1

(x− 1)
√
x2 − 2x

dx.

Hint: Complete the square, x2 − 2x = (x− 1)2 − 1, use u = x− 1 and
recall the derivative formulas for the inverse trig functions.

41.

∫

w + 6

w2 + 1
dw.

42.

∫

w3 − 2w2 + 4

w2 + 1
dw.

43.

∫

sin 8θ

9 + sin4 θ
dθ.

44.

∫

1

(x+ 1)(x− 2)
dx. Hint: Show 1

(x+1)(x−2)
= 1

3

[

1
x−2

− 1
x+1

]

.

45.

∫

1

x2 − 9
dx.

46.

∫

x

x2 − 9
dx.

47.

∫

cos2(tan x)

cos2 x
dx.

48.

∫

arctan x

1 + x2
dx.

49.

∫

cot ρ sec2 ρ dρ.
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