
Sequences and Limits

Sequences.

Definition. A finite sequence of real numbers is a
function from an ordered finite set, e.g. {1, 2, 3, . . . n}, into
R. It can also be thought of as a ordered subset of R.
When listing the members we use parentheses, (), instead
of brackets, {}. For example,

(0, 4, 7, 7,−3, 0.34, π, 0, 0, 1)

is a finite sequence. Note that repeated elements are al-
lowed. The underlying set for this finite sequence is

{π, 0, 4, 7,−3, 0.34},

in no particular order. (I’ll give the formal definition of
underlying set later.)

Definition. A countably infinite sequence of real
numbers is a function from N into R. The domain N can
be replaced by sets like {0}∪N, {3, 4, 5, . . . }, or { the even
positive integers }. The domain has to have a least member
and each member must have a successor.

If there is an apparent pattern we can list the first few
members of a sequence and then end with “. . . ” . Again
we use parentheses.

(1, 1, 2, 12 , 3,
1
3 , 4,

1
4 , . . . )

(2, 3, 5, 7, 11, 13, 17, . . . )

It may be that the pattern does not start right away.

(
√

5, 0, 0, 13 ,−10, 17,− 3
20 , e, π, e, π, e, π, . . . )



Sometimes we can find or are given a formula for the
terms of a sequence. For Example, let S = (sn)∞i=1 where
sn = n

n+2 . Then

S = (13 ,
2
4 ,

3
5 ,

4
6 , . . . ).

Sometimes the formula is recursive. Example, the Fi-
bonacci sequence is

(fn)∞n=1 = (1, 1, 2, 3, 5, 8, 11, 19, 30, 49, 79, . . . ),

which is defined by letting f1 = 1, f2 = 1 and fn =
fn−1 + fn−2 for all integers n ≥ 3. Such recursive se-
quences often arise in finding series solution to differential
equations. This is covered in MATH 305. See Chapter
5 of Elementary Differential Equations & Boundary Value
Problems by Boyce & DiPrima.

Definition. The underlying set of a sequence is its
range as a subset of R. Said differently, the underlying set
of a sequence (sn) is the set {sn |n ∈ N}. For example, the
underlying set of the sequence

(1,−1, 1,−1, 1,−1, 1,−1, ....)

is the set {1,−1}.

Some More Definitions.

• A sequence is bounded above if its underlying set
is bounded above.
• A sequence is bounded below if its underlying set

is bounded below.
• A sequence is bounded if its underlying set is bounded

above and below.
• A sequence (sn) is increasing if sn < sn+1 ∀n ∈ N.
• A sequence (sn) is decreasing if sn > sn+1 ∀n ∈ N.
• A sequence (sn) is nondecreasing if sn ≤ sn+1 ∀n ∈
N.



• A sequence (sn) is nonincreasing if sn ≥ sn+1 ∀n ∈
N.
• A sequence that is increasing, decreasing, nonincreas-

ing or nondecreasing is said to be monotone.
• A sequence is eventually (increasing, decreasing,

nonincreasing, nondecreasing or monotone) if there
is a natural number N such that the sequence is (in-
creasing, decreasing, nonincreasing, nondecreasing or
monotone) for all n ≥ N .

Optional Comments. Functions from Z into R are
called bi-infinite sequences. These are used in informa-
tion theory. See An Introduction to Symbolic Dynamics
and Coding by Marcus & Lind. There is a generalization of
sequences called nets that involve functions from (poten-
tially) uncountable sets into R. See General Topology by
Wilard.

Limits.

Definition. A sequence (sn)∞n=1 converges to a limit
L ∈ R if

∀ε > 0∃N ∈ N such that n ≥ N =⇒ |sn − L| < ε.

The notation for this is lim
n→∞

sn = L or simply sn → L.

Example 1. lim
n→∞

1
n = 0.

Proof. Let ε > 0 be given. By the Archimedean Property
(as not seen of HGTV) ∃N ∈ N such that 1/N < ε. If
n ≥ N then 1/n ≤ 1/N . Thus,∣∣ 1

n − 0
∣∣ < ε.

Therefore, lim
n→∞

1
n = 0. �



Example 2. lim
n→∞

n

2n+ 1
=

1

2
.

Scratch Work. Let ε > 0 be given. We want to get n big
enough that ∣∣∣∣ n

2n+ 1
− 1

2

∣∣∣∣ < ε.

Set up like this a solve for n.

−ε < n

2n+ 1
− 1

2
< ε

−ε(2n+ 1) < n− 2n+ 1

2
< ε(2n+ 1)

−ε(2n+ 1) < −1

2
< ε(2n+ 1)

In the last line the right hand inequality is true for natural
numbers n. By the Archimedean Property the is a natural
numberN such thatNε > 1/2. For n ≥ N we have 2n+1 >
N so

−ε(2n+ 1) < −εN < −1

2
.

Now that we see what to do we write out the proof. �

Proof. Let ε > 0 be given. By the Archimedean Property
the is a natural number N such that Nε > 1/2. Then for
n ≥ N we have 2n+ 1 > N .

−ε(2n+ 1) < −εN < −1

2
< ε(2n+ 1).

−ε(2n+ 1) < n− n− 1

2
< ε(2n+ 1)

−ε(2n+ 1) < n− 2n+ 1

2
< ε(2n+ 1)

−ε < n

2n+ 1
− 1

2
< ε



Thus, ∀ n ≥ N we have∣∣∣∣ n

2n+ 1
− 1

2

∣∣∣∣ < ε.

Hence, lim
n→∞

n

2n+ 1
=

1

2
.

�

Example 3. lim
n→∞

1

n2 + 1
= 0.

Proof. ∀n ∈ N we know 1 ≤ n implies n ≤ n2 implies
n ≤ n2 + 1. Therefore,

1

n2 + 1
≤ 1

n
.

Let ε > 0. ∃N ∈ N such that n ≥ N implies 1
n < ε by

Example 1. Thus, ∀n ≥ N∣∣∣∣ 1

n2 + 1
− 0

∣∣∣∣ =
1

n2 + 1
<

1

n
< ε.

Hence, lim
n→∞

1

n2 + 1
= 0. �

It occurs to us that the idea in this example could be
generalized into a useful tool.

Theorem 1. Let (an) and (bn) be sequence. If 0 ≤ an ≤
bn for all n and bn → 0, then an → 0.

Proof. Let ε > 0. ∃ N ∈ N such that n ≥ N implies
|bn − 0| < ε. Thus,

|an − 0| = an ≤ bn = |bn − 0| < ε.

Thus, lim
n→∞

an = 0. �



Example 4. Prove that lim
n→∞

1
n3 = 0.

Proof. Since n ≥ 1, we know n2 ≥ n. Hence, n3 ≥ n2 and
so n3 ≥ n. Thus,

1

n3
≤ 1

n
.

Since, we know from Example 1 that 1/n→ 0, Theorem 1
tells us that lim

n→∞
1
n3 = 0. �

Example 5. Let p ∈ N. Prove that lim
n→∞

1
np = 0.

Proof. By induction you can prove that np ≥ n. Hence
1/np ≤ 1/n. The result follows from the last Theorem. �

Example 6. Prove that lim
n→∞

1
n! = 0.

Proof. We claim that n! ≥ n. This is true for n = 1 since
1! = 1. If for a given k ≥ 1 we have k! ≥ k then (k + 1)! =
(k + 1)k! ≥ (k + 1)k ≥ k + 1. By induction n! ≥ n for all
natural numbers n. Thus,

1

n!
≤ 1

n
.

By applying Theorem 1 we have lim
n→∞

1
n! = 0. �

Example 7. Prove that lim
n→∞

1
2n = 0.

Proof. We will use induction to prove that 2n ≥ n for all
n ∈ N. For n = 1 we have 21 ≥ 1. Assume 2k ≥ k for some
given k ≥ 1. Then

2k+1 = 2 · 2k ≥ 2k ≥ k + 1,



where the last inequality follows from k ≥ 1.
Now we have 1

2n ≤
1
n so the last Theorem gives the result.

�

Example 8. Prove that lim
n→∞

1√
n

= 0.

Our trick will not work. We will do a direct proof. We will
need the following fact which we prove first: if 0 < a < b
then

√
a <

√
b. Proof. We use proof by contradiction.

Suppose
√
a ≥
√
b.

Then

a =
√
a
√
a ≥
√
a
√
b.

But also,
√
a
√
b ≥
√
b
√
b = b.

Combining these last two lines gives a ≥ b, which contra-
dicts the given fact that a < b. Therefore, if 0 < a < b
then

√
a <
√
b.

Now we return to the last Example.

Proof. Let ε > 0. ∃ N ∈ N such that N > 1/ε2. Let
n ≥ N . Then

√
n > 1/ε. Thus

1√
n
< ε.

Thus, lim
n→∞

1√
n

= 0. �

Example 9. Prove that the sequence (1,−1, 1,−1, 1,−1, . . . )
does not converge.



Proof. This seems obvious, but the proof is an exercise in
logic. Let sn = (−1)n+1. The claim that (sn) does not have
a limit is equivalent to the following. For every L ∈ R

∃ ε > 0 such that∀N ∈ N, ∃n ≥ N, such that |sn − L| ≥ ε.

Suppose sn → L. Either L ≥ 0 or L < 0.
Case 1: Assume L ≥ 0. Let ε = 0.1. Let N be any

natural number. Let n be an even natural number greater
than N . (For example we could let n = 2N .) Then sn =
−1. We have

|sn − L| = | − 1− L| = L+ 1 > 0.1,

since L is nonnegative. Therefore, L is not the limit of (sn).

Case 2: Assume L < 0. Let ε = 0.1. Let N be any
natural number. Let n be an odd natural number greater
than N . (For example we could let n = 2N + 1.) Then
sn = 1. We have

|sn − L| = |1 + (−L)| > 0.1,

since −L is positive. Therefore, L is not the limit of (sn).

The inescapable conclusion is that (sn) does not have a
limit. �

Example 10. Let an = n2. Then (an) does not converge
to any real number.

Proof. Suppose an → L ∈ R. Let ε = 0.01. By the
Archimedean Property there is an N ∈ N such that N >
L+ 0.5. Then for n ≥ N we have

|an−L| = |n2−L| = n2−L > (L+0.5)2−L = L2+0.25 ≥ 0.25 > 0.01.

Therefore, (n2) does not converge to a real number. �



In Section 9 of the textbook several standard theorems
about sequences are developed. I’ll state these here. We
will go over some of the proofs in class. You should be read
(unpack and understand) all of these proofs. The textbook
skips one important result: if an = K for all n, then an →
K. This is obvious, but try to write out a formal proof for
yourself.

Theorem 9.1. If a sequence converges to a real number
then it is bounded.

Theorem 9.2. Let k ∈ R and suppose sn → s ∈
R. Then the sequence (ksn) converges to ks. That is,
lim
n→∞

ksn = k · lim
n→∞

sn, when the second limit exists.

Theorem 9.3. If sn → s and tn → t, then (sn + tn) →
s + t. That is, lim

n→∞
sn + tn = lim

n→∞
sn + lim

n→∞
tn, when the

limits on the right exist.

Theorem 9.4. If sn → s and tn → t, then (sntn) → st.
That is, lim

n→∞
sntn = ( lim

n→∞
sn)( lim

n→∞
tn), when the limits on

the right exist.

Theorem 9.5. If tn → t where tn 6= 0 ∀n and t 6= 0,
then 1/tn → 1/t.

Theorem 9.6. If sn → s and tn → t, where tn 6= 0∀n
and t 6= 0 then sn/tn → s/t.

The proofs of the next theorem are pretty difficult. Treat
them as optional reading.

Theorem 9.7 (Basic Examples).
(a) lim

n→∞
1/np = 0 for p > 0. (The book’s proof is not valid.)

(b) lim
n→∞

an = 0 for |a| < 1.

(c) lim
n→∞

n
1
n = 1.



(d) lim
n→∞

a
1
n = 1 for a > 0.

Using these one can do many examples very quickly.

Example. Prove that lim
n→∞

5n2 + n+ 3

3n2 + 7
=

5

3
.

Proof.

lim
n→∞

5n2 + n+ 3

3n2 + 7
= lim

n→∞

5 + 1
n + 3

n2

3 + 7
n2

=
lim
n→∞

5 + lim
n→∞

1

n
+ 3 lim

n→∞

1

n2

lim
n→∞

3 + 7 lim
n→∞

1

n2

=
5 + 0 + 3 · 0

3 + 7 · 0

=
5

3
�



Sequences with Infinite Limits

Definition. Let (sn) be an infinite sequence of real num-
bers.

• lim
n→∞

sn = ∞ if for every positive real number B there is a natural

number N such that n > N implies sn > B.

• lim
n→∞

sn = −∞ if for every negative real number B there is a natural

number N such that n > N implies sn < B.

Example. Prove that lim
n→∞

n2 =∞.

Proof. Let B > 0 be given. There exists a natural number
N larger than B. Let n > N . Then n2 > N 2 > B2. If
B > 1 we have B2 > B, and so n2 > B. If B ∈ (0, 1], we
still have n2 > B since n2 > 1. Thus, lim

n→∞
n2 =∞. �

Example. Prove that lim
n→∞

n2

n+ 1
=∞.

Proof. Let B > 0 be given. Notice that n2

n+1 = n− 1 + 1
n+1 .

Let N be a natural number greater than B + 1. Then for
n > N we have

n− 1 +
1

n+ 1
> n− 1 > N − 1 > B.

Thus, lim
n→∞

n2

n+ 1
=∞. �

There are analogs of some of the theorems for finite limits
to infinite limits. The statements are a bit more complex.
I’ll just list a few of them here.

• If sn →∞ and tn →∞, then sn + tn →∞.
• If sn →∞ and tn → L ∈ R, then sn + tn →∞.



• If sn →∞ and (tn) is bounded, then sn + tn →∞.
• If sn →∞ and tn →∞, then sntn →∞.
• If sn →∞ and tn → L > 0, then sntn →∞.
• If sn is never zero and sn →∞, then 1/sn → 0.
• If sn →∞ and tn > sn, then tn →∞.

Similar statements hold for limits to −∞. However, if
sn →∞ and tn → −∞, no general conclusion can be drawn
about the limit of (sn + tn). If sn → ∞ and tn → 0, no
general conclusion can be drawn about the limit of (sntn).

Here is an application.

Theorem. Let p(x) = amx
m + · · ·+ a1x+ a0 and q(x) =

bkx
k + · · · + b1x + b0 be polynomials with real coefficients;

assume am 6= 0 and bk 6= 0.

• If m > k, then lim
n→∞

p(n)

q(n)
= ±∞, where the sign is

the same as the sign of am.

• If m < k, then lim
n→∞

p(n)

q(n)
= 0.

• If m = k, then lim
n→∞

p(n)

q(n)
=
am
bk

.


