
Series

Definition. The infinite sum is defined to
∞
∑

k=p

ak = lim
n→∞

n
∑

k=p

ak

when the limit exists. Usually the sum will start with k = 1
or 0.

The n-th partial sum of
∞
∑

k=p

ak is sn =

p+n−1
∑

k=p

ak.

Now we can write
∞
∑

k=p

ak = lim
n→∞

sn when the limit exists.

Note. If we leave off the first few terms of a sequence the
limit is unaffected. This is a special case of the subsequence
theorem. If we leave off a finite number of terms of an
infinite sum, then whether it converges or not is unaffected,
but if it converges the value will be changed.

A series converges if and only if the sequence of partial
sums is Cauchy. Notice that for n > m

sn − sm =
n

∑

k=m+1

an.

We say a series satisfies the Cauchy criteria if ∀ ǫ > 0, ∃
N ∈ N s.t.

n ≥ m > N =⇒
∣

∣

∣

n
∑

k=m

ak

∣

∣

∣
< ǫ.

Thus, a series converges if and only if it satisfies the Cauchy
criteria. (This is Theorem 14.4 in the textbook.)



Corollary (14.5). If
∑

ak converges then ak → 0.
Proof. Let ǫ > 0. ∃ N ∈ N s.t.

n ≥ m > N =⇒

∣

∣

∣

∣

∣

n
∑

k=m

ak

∣

∣

∣

∣

∣

< ǫ.

Thus, for k > N we have |ak| < ǫ by using n = m = k.
Thus, ak → 0.

Example. (This is Exercise 4.14 in your textbook.)
∞
∑

n=1

1
n
= ∞.

Proof. Let sm =
m
∑

n=1

1
n
. We will show sm → ∞. Consider

the subsequence (smk
)∞k=1 where mk = 2k.

We will use induction to prove that smk
≥ 1 + k

2 for all

k ∈ N. First notice that sm1
= s2 = 1 + 1

2 . Suppose,

smk−1
≥ 1 + k−1

2 for some k > 1. Now,

smk
=

(

1 + 1
2 + · · ·+ 1

2k−1

)

+
(

1
2k−1+1

+ · · ·+ 1
2k

)

.

Each pair of parentheses has 2k−1 terms. In fact the sum in
the first pair is smk−1

. Each term in the second pair before
the last term is greater than the last term. Thus,

smk
≥ smk−1

+ 2k−1 ·
(

1
2k

)

= smk−1
+ 1

2 .

By the induction hypothesis smk−1
≥ 1 + k−1

2 . Thus,

smk
≥ 1 + k−1

2 + 1
2 = 1 + k

2 .

Since 1 + k/2 → ∞ we have that smk
→ ∞. Thus (sm)

cannot converge. To show it diverges to infinity we use the
fact that (sm) is increasing since all the 1

n
are positive. Let



B > 0. ∃ K ∈ N s.t.

k ≥ K =⇒ smk
> B.

Thus,

m ≥ mk =⇒ sm ≥ smk
> B.

Thus, sm → ∞. �

Definitions. A series
∑

ak is called alternating if ak+1

always has the opposite sign of ak. They come up in many
applications. Consider a series

∑

an. If
∑

|an| converges
we say the series is absolutely convergent. We will see
below that if

∑

|an| converges then so does
∑

an. If
∑

an
converges but

∑

|an| does not we say the series is condi-
tionally convergent.

There is a slew of tests for convergence. We will run
through these and prove a few of them.

The Direct Comparison Test. (14.6) Assume an ≥ 0
for all n ∈ N.
(a) If

∑

an converges (to a finite real number) and |bn| ≤
an ∀n ∈ N, then

∑

bn converges (to a finite real number
≤

∑

an).
(b) If

∑

an = ∞ and bn ≥ an ∀n ∈ N, then
∑

bn = ∞.
(c) Both (a) and (b) hold true if “∀n ∈ N” is replaced by
“∀n > K for some K ∈ N”.

Proof of (a). Let ǫ > 0. Let N be s.t. n > m > N implies
n

∑

k=m

ak < ǫ. Then

∣

∣

∣

∣

∣

n
∑

k=m

bk

∣

∣

∣

∣

∣

≤

n
∑

k=m

|bk| ≤

n
∑

k=m

ak < ǫ.

You do (b) and (c). �



Note. A special case of (a) is that if
∑

|an| converges
then so does

∑

an.

Theorem. Assume
∑

an and
∑

bb converge and let c ∈
R. Then
(i)

∑

can = c
∑

an, and
(ii)

∑

an + bn =
∑

an +
∑

bn.

Proofs are easy and left to you. Note that if
∑

an diverges
and c 6= 0, then

∑

can diverges too.

The Limit Comparison Test. (Not in your textbook.)
Let

∑

an and
∑

bn be series with positive terms. If

lim
n→∞

an
bn

= L ∈ (0,∞),

then
∑

an and
∑

bn either both converge or both diverge.

Proof. Let ǫ = L/2. Then ∃ N s.t.

n > N =⇒
L

2
<

an
bn

<
3L

2
.

Thus,

Lbn
2

< an <
3Lbn
2

.

If
∑

bn converges, then so do
∑

Lbn/2 and
∑

3Lbn/2.
Thus,

∑

an converges by the Direct Comparison Test (c).

If a positive term series diverges, it diverges to infinity.
If

∑

bn diverges to ∞ , then so does
∑

Lbn/2. By the
Direct Comparison Test

∑

an diverges too.

The other two implications follow logically from these or
note that lim

n→∞
bn/an = 1/L ∈ (0,∞). �



Alternating Series Test. Assume an is nonnegative
and nonincreasing for all n; that is

0 ≤ an+1 ≤ an, ∀n ∈ N.

If an → 0, then the alternating series
∞
∑

n=1

(−1)n+1an con-

verges.

Idea of the proof. See the figure below. It is a bar graph

of the partial sums, sm =
m
∑

n=1

(−1)n+1an. Notice that the

subsequence of odd terms is decreasing and bounded below
while the even terms are increasing and bounded above. I’ll
discuss it in class.

s1

s2

s3

s4

s5

s6

s7

�

Proof. Let sm =
∑m

n=1(−1)n+1an. Consider the subsequences
(s2k) and (s2k−1). We will show that following.

(*) The (green) subsequence (s2k) is nondecreasing and
bounded above. Hence it has a limit Le.



(**) The (pink) subsequence (s2k−1) is nonincreasing and
bounded below. Hence it has a limit Lo.
(***) Finally, we show Le = Lo and that this is the limit of
(sm).

(*) s2(k+1)−s2k = −a2k+2+a2k+1 ≥ 0 implies s2(k+1) ≥ s2k.
Thus, (s2k) is nondecreasing. We claim s2k ≤ a1 for all k.
We write

s2k = a1 − a2 + a3 − a4 + a5 − · · · − a2k−2 + a2k−1 − a2k

= a1 − (a2 − a3)− (a4 − a5)− · · · − (a2k−2 − a2k−1)− a2k.

All the terms in parentheses are positive or zero as is the
last term. Hence, s2k ≤ a1.

(**) s2(k+1)−1−s2k−1 = a2k+1−a2k ≤ 0 implies s2(k+1)−1 ≤
s2k−1. Thus, (s2k−1) is nonincreasing. We claim s2k−1 ≥
a1 − a2 for all k. We write

s2k−1 = a1 − a2 + a3 − a4 + a5 − a6 · · · a2k−3 − a2k−2 + a2k−1

= a1−a2+(a3−a4)+(a5−a6)+· · ·+(a2k−3−a2k−2)+a2k−1.

All the terms in parentheses are positive or zero as is the
last term. Hence, s2k−1 ≥ a1 − a2.

(***) We compute Le − Lo =

lim
k→∞

s2k − lim
k→∞

s2k−1 = lim
k→∞

s2k − s2k−1 = lim
k→∞

−a2k = 0.

Hence Le = Lo. Let L = Le.
Let ǫ > 0. ∃N s.t. for k > N we have |s2k − L| < ǫ and

|s2k−1−L| < ǫ. Hence for and n > 2N we have |sn−L| < ǫ.
Thus sn → L which is to say

∞
∑

n=1

(−1)n+1an = L.

�



Examples.

The series
∞
∑

n=1

(−1)n+1 1
n
converges. It can be shown that

the limit is ln 2.

The series
∞
∑

n=1

(−1)n+1 1
n2 converges. It can be shown that

the limit is π2/12.

Geometric Series Test. A series of the form
∑

ark is
called a geometric series.
(i) If r 6= 1, then

n
∑

k=0

ark = a
1− rn+1

1− r
.

(ii) If |r| < 1, then

n
∑

k=0

ark =
a

1− r
.

Proof. You have done this. �

We did some examples in class.

Ratio Test. [This version is the one given in most cal-
culus textbooks. Your textbook gives a jazzed up version
that is covered in 452.] Let

∑

an be an infinite series of
nonzero terms.

(i) If lim
n→∞

|an+1|

|an|
= L < 1, then

∑

an converges abso-

lutely.

(ii) If lim
n→∞

|an+1|

|an|
= L > 1, then

∑

an diverges.



Proof. The idea is to use apply the Direct Comparison The-
orem using a geometric series.
(i) ∃ r ∈ R s.t. L < r < 1. Let ǫ = r−L. Now, ∃N ∈ N

s.t. n ≥ N implies
∣

∣

∣

∣

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

− L

∣

∣

∣

∣

< ǫ.

Thus,

−(r − L) <

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

− L < r − L.

Thus,
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< r.

Thus,

|an+1| < |an|r, ∀n ≥ N.

By induction,

|aN+k| < |aN |r
k, ∀k ∈ N.

By the Geometric Series Test
∑

|aN |r
k

converges since |r| < 1. By the Direct Comparison Test

∞
∑

k=1

|aN+k|

converges. Therefore,

∞
∑

n=1

|an|

converges.

(ii) Similar. �



Example. The series
∞
∑

n=0

1

n!
converges.

Proof. We use the Ratio Test.

1
(n+1)!

1
n!

=
1

n+ 1
→ 0 < 1.

�

Later we will show that
∞
∑

n=0

1

n!
= e.

Root Test. [This version is the one given in most cal-
culus textbooks. Your textbook gives a jazzed up version
that is covered in 452.] Let

∑

an be an infinite series.

(i) If lim
n→∞

n

√

|an| = L < 1, then
∑

an converges abso-

lutely.

(ii) If lim
n→∞

n

√

|an| = L > 1, then
∑

an diverges.

Proof. (i) ∃ r ∈ R s.t. L < r < 1. ∃ N ∈ N s.t. n ≥ N
implies

∣

∣

∣

n

√

|an| − L
∣

∣

∣
< r − L.

Thus,
n

√

|an| < r.

Thus,

|an| < rn.

Thus,
∞
∑

n=N

|an|



converges by the Direct Comparison Test since |r| < 1. It

follows that
∞
∑

n=1

an is absolutely convergent.

You can prove (ii). �

Integral Test. See textbook.

Proof. See textbook. �

p-Series Test. The infinite sum
∞
∑

n=1

1

np
converges for

p > 1 and diverges to ∞ for p ≤ 1.

Proof. Use the Integral Test. See textbook. �

Examples.
∞
∑

n=1

1

n2
converges. In fact it equals π2/6.

∞
∑

n=1

1

n4
converges. In fact it equals π4/90.

∞
∑

n=1

1

n6
converges. In fact it equals π6/945.

∞
∑

n=1

1

n8
converges. In fact it equals π4/9450.


