
Example Finding Two Invariant Planes

Here we study a 4×4 system, v′(t) = Av(t), where the matrix A has
four complex eigenvalues. They will of course be two pairs of complex
conjugates. For each pair we will find an plane passing through the
origin of R4 that is invariant. For one pair of eigenvalues the real parts
are negative. In the corresponding invariant plane solution curves will
spiral in toward the origin. For the other pair the real parts are positive,
so for the other plane solutions curves spiral outward.

Let A =


3 2 3 7
−6 1 −2 −13
8 −4 0 14
−5 1 0 −6

 and v(t) =


w(t)
x(t)
y(t)
z(t)

. We consider

v′(t) = Av(t).

Here are the eigenvalues for A and a choice of an eigenvector for
each:

1 + i, u1 =


−1

2 + i
−3− i

1

; 1− i, u2 =


−1

2− i
−3 + i

1

; −2 + 3i, u3 =


−1− i
3 + i
−4
2

;

−2− 3i, u4 =


−1 + i
3− i
−4
2


Using these we can write down the general complex solution.

v(t) = C1u1e
t(cos t+i sin t)+C2u2e

t(cos t−i sin t)+C3u3e
−2t(cos 3t+i sin 3t)

+u4e
−2t(cos 3t− i sin 3t),

where C1, C2, C3 and C4 are complex constants.
With a bit of work you can show that the general real solution is

v(t) = C1


− cos t

2 cos t− sin t
−3 cos t+ sin t

cos t

 et + C2


− sin t

cos t+ 2 sin t
− cos t− 3 sin t

sin t

 et
1



2

+C3


− cos 3t+ sin 3t
3 cos 3t− sin 3t
−4 cos 3t
2 sin 3t

 e−2t + C4


− cos 3t− sin 3t
cos 3t+ 3 sin 3t
−4 sin 3t
2 sin 3t

 e−2t,
where C1, C2, C3 and C4 are real constants.

Now, there should be two invariant planes in R4, one where solutions
spiral in toward the origin, and one where solutions spiral outward
without bound. We can find basis vectors for these two subspaces by
recombining the complex eigenvectors as follows. Let

r1 =
u1 + u2

2
=


−1
2
−3
1

 , r2 =
u1 − u2

2i
=


0
1
−1
0

 ,

r3 =
u3 + u4

2
=


−1
3
−4
2

 , r4 =
u3 − u4

2i
=


1
−1
0
0

 .
Let

P1 = span{r1, r2} = {αr1 + βr2 |α, β ∈ R},
and

P2 = span{r3, r4} = {δr3 + γr4 | δ, γ ∈ R}.
Then P1 is the invariant plane in R4 where solutions spiral out and

P2 is the invariant plane in R4 where solutions spiral in toward the
origin.

It is challenging to visualize in four dimensions. (But see, Flatland:
A Romance of Many Dimensions, by Edward Abbott, 1884, for help in
developing your mathematical imagination.) However, we can ab-
stract these two planes out of R4 and just see them as two dimensional
planes.

Let’s pick a point on P1. That’s a bit tricky. If we select four real
numbers how do we know if they are coordinates of a point on P1? We
do not have an equation for P1 like we do for planes in R3. (There is a
no cross product in R4!). A point (w, x, y, z) ∈ R4 is on P1 if and only
if we can find real values of α and β such that

α


−1
2
−3
1

+ β


0
1
−1
0

 =


w
x
y
z

 .
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In fact, we can generate points on P1 by just picking values for α
and β. Let’s pick α = β = 1. This gives the point (−1, 3,−4, 1) ∈
P1 ⊂ R4. I used Maple to find the solution for this initial condition

v(0) =
[
−1 3 −4 1

]T
. I got

w(t)
x(t)
y(t)
z(t)

 =


− cos t− sin t
3 cos t+ sin t
−4 cos t− 2 sin t

cos t+ sin t

 et.
Here is the Maple command used.

> dsolve([diff(w(t),t) = 3*w(t)+2*x(t)+3*y(t)+7*z(t),

diff(x(t),t) = -6*w(t)+x(t)-2*y(t)-13*z(t),

diff(y(t),t) = 8*w(t)-4*x(t)+14*z(t),

diff(z(t),t) = -5*w(t)+x(t)-6*z(t),

w(0)=-1, x(0)=3, y(0)=-4, z(0)=1]);

Notice none of the terms in the solution involve e−2t. We will graph
it by solving for α and β and then graph the curve in the αβ-plane.
Solving for α(t) and β(t) gives,

α(t) = −w(t) = (cos t+ sin t)et

β(t) = x(t)− 2α(t) = x(t) + 2w(t) = (cos t− sin t)et.

Here is the graph of this solution curve in the αβ-plane.

Here is the Maple command that generated this plot.

> plot([(cos(t) + sin(t))*exp(t), (cos(t) − sin(t))*exp(t), t=0..2*Pi]);
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Let’s play now with P2. I’ll pick the point on P2 given by δ = 1,
γ = 2. This gives (1, 1,−4, 2) ∈ P2. The solution curve, via Maple, is

w(t)
x(t)
y(t)
z(t)

 =


cos 3t+ 3 sin 3t
cos 3t− 7 sin 3t
−4 cos 3t+ 8 sin 3t
2 cos 3t− 4 sin 3t

 e−2t.
Notice no terms involve et. Now we need to solve for δ and γ in terms
of w, x. y and z.

δ(t) = z(t)/2 = (cos t− 2 sin t)e−2t.

γ(t) = w(t) + δ(t) = (2 cos 3t+ sin 3t)e−2t.

Below we plot this curve in the δγ-plane.

Here is the Maple command that generated this plot.

> plot([(cos(3*t) − 2*sin(3*t))*exp(−2*t), (2*cos(3*t) + sin(3*t))*exp(−2*t), t=0..2*Pi]);

If we pick any point in R4 as our initial starting point we can imagine
(form an image of) what the system with do. Unless the point is exactly
on P2 the solution curve will move towards P1 and as it get closer to
P1 it will spiral outward without bound. Only solutions starting on P2

will converge to the origin. But, even in this case small computational
errors could cause the apparent solution to leave P2 and then it is off
to infinity!


