
Section 7.3
More Linear Algebra

We consider

b1 = a11x1 + a12x2 + · · ·+ a1nxn,

b2 = a21x1 + a22x2 + · · ·+ a2nxn,
...

bn = an1x1 + an2x2 + · · ·+ annxn,

where the bi’s and aij’s are given and the xi’s are unknowns. We can
also write this as

b = Ax.

If b is the zero vector the system is said to be homogeneous. If not,
it is nonhomogeneous.

Fact. If detA 6= 0, then A−1 exists, and x = A−1b is the unique
solution.

Fact. If detA = 0, then

• Ax = 0 has infinitely many solutions, while
• Ax = b 6= 0 has either no solutions or infinitely many.

Examples will come shortly.
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Vector Spaces. (This is not in your textbook.)

Let V be a nonempty subset of Rn or Cn. Then V is called a vector
space if the following closure axioms hold true.

(1) If v,w ∈ V , then v + w ∈ V .
(2) If v ∈ V and α ∈ R or C, then αv ∈ V .

Example. In R2 lines going through the origin are vector spaces.
So are {(0, 0)} and R2 itself. In fact these are the only vector spaces
in R2.

Example. In R3 lines and planes going through the origin are vector
spaces. So are {(0, 0, 0)} and R3 itself. In fact these are the only vector
spaces in R3.

If F is a nonempty set of functions from R to R, then F is said to
be a vector space if the two closure axioms hold true.

Example. The solution set of y′′ + y = 0 is the vector space
{C1 sin t+ C2 cos t |C1, C2 ∈ R}. Think about that.
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Linear Dependence and Independence.

A set of vectors {v1,v2, . . . ,vk} is said to be linearly independent
if

c1v1 + c2v2 + · · · ckvk = 0 (∗)
has only one solution c1 = c2 = · · · = ck = 0. If there is a nontrivial
solution, then {v1,v2, . . . ,vk} is linearly dependent.

We can write (*) as a matrix equation

Ac = 0,

where we regard the vi’s as columns of A and c =
[
c1 c2 · · · ck

]T
.

Check this.

Fact. If A is n× n then the columns of A are linearly independent
iff detA 6= 0. The same is true for the rows of A.
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Example. Solve
2x− y = 4
x+ 3y = 7

or show there are no solutions.

Clearly, you can do this any number of ways. The point here is to
do it systematically and think about it. We set up an augmented
matrix and use row operations to put it into reduced row echelon
form (RREF).

2 −1 | 4
1 3 | 7

0 −7 | −10
1 3 | 7

1 3 | 7
0 −7 | −10

1 3 | 7
0 1 | 10/7

1 0 | 19/7
0 1 | 10/7

The 1’s on the diagonal are called pivots. We see that the unique
solution is

x = 19/7 y = 10/7.

Example.
2x+ 3y = 2
4x+ 6y = 3

has no solutions.

Example.
2x+ 3y = 0
4x+ 6y = 0

has infinitely many solutions. The so-

lution set is the line y = −2x/3, which is a vector space.

Example.
2x+ 3y = 2
4x+ 6y = 4

has infinitely many solutions. The so-

lution set is the line y = (2− 2x)/3, which is not a vector space.
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Example X. (Will be used later.) Find all solutions to 1 −4 −6
4 11 12
−3 −6 −6

xy
z

 =

0
0
0

 .
When doing the row operations I won’t bother recording the last

column of zeros since they will not change value.

1 −4 −6
4 11 12
−3 −6 −6

1 −4 −6
0 27 36 R2− 4R1
0 −18 −24 R3 + 3R1

1 −4 −6
0 3 4 R2÷ 4
0 3 4 R3÷−6

1 −4 −6
0 1 4/3 R2÷ 3
0 0 0 R3−R2

1 0 −2/3 R1 + 4R2
0 1 4/3
0 0 0

This is the RREF. There are only two pivots. This means z will be a
free variable. We write

x = 2z/3

y = −4z/3

z = z

Or, in matrix form xy
x

 =

 2/3
−4/3

1

 z.
We think of the solution set as the vector space given by the

span of

 2/3
−4/3

1

 =


 2/3
−4/3

1

 z : z ∈ R

 .
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(It is also called the nullspace of the original matrix.) Notice is it
equal to

span of

 2
−4
3

 .
(This is an alternative basis for the solution space.) Below we show
this vector and the solution space it spans.

Example Y. (Will be used later.) Find all solutions to−2 −4 −6
4 8 12
−3 −6 −9

xy
z

 =

0
0
0

 .
−2 −4 −6
4 8 12
−3 −6 −9

1 2 3 R1÷−2
1 2 3 R2÷ 4
1 2 3 R3÷−3

1 2 3
0 0 0 R2−R1
0 0 0 R3−R1
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There is only one pivot. We have x+2y+3z = 0. This gives a plane
in R3. It goes through the origin and is hence a vector space. We can
rewrite this as follows.

x = −2y − 3z
y = y
z = z

We can write this is matrix form asxy
z

 =

−2
1
0

 y +

−3
0
1

 z.
Thus, the solution set is the set of all vector tat can be written as
a linear combination of these two vectors. This is called the span of
−2

1
0

 ,
−3

0
1

 . A graph of this plane is shown below.
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Eigenvalues, Eigenvectors and Eigenspaces

Eigen is the German word for characteristic. Consider the problem

Ax = λx

where A is an n xn given matrix of real constants, x is a 1× n column
vector of unknowns and λ is an unknown scalar (real or complex). We
want to find values for λ and vectors for x. Such a λ is called an
eigenvalue for A and a corresponding (nonzero) vector x is called an
eigenvector for λ and A. The set of all eigenvectors for λ (including
now the zero vector) is a vector space and is called the eigenspace for
λ and A.

Geometrically, if λ and x are real, the matrix A, as a map from Rn

to Rn, maps the subspace {rx : r ∈ R} to itself. (Onto if λ 6= 0.)
Eigenvectors come up in surprising places. When you do a Google

search the list you get is actually an eigenvector for a large linking
matrix. See https://en.wikipedia.org/wiki/PageRank. Facial recog-
nition programs use eigenfaces, which are in fact eigenvectors. See
https://en.wikipedia.org/wiki/Eigenface.

Now, here is how we can solve Ax = λx. As stated we want nonzero
solutions for x.

Ax = λx

Ax− λx = 0

Ax− λIx = 0

(A− λI)x = 0

But we can only get nontrivial solutions for x if det(A−λI) = 0. Now
det(A − λI) is just a polynomial in λ. We find its roots and then for
each go back and solve for x.

The rest of these notes are examples.

Example. Let A =

[
1 1
3 −1

]
. Find the eigenvalues and for each find

an eigenvector.

Solution. A− λI =

[
1− λ 1

3 −1− λ

]
.

det(A− λI) = (1− λ)(−1− λ)− 3

= λ2 + λ− λ− 1− 3

= λ2 − 4.
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Solving λ2 − 4 = 0 gives λ = ±2.

Suppose λ = 2.

Then A−2I =

[
−1 1
3 −3

]
. We solve

[
−1 1
3 −3

] [
x
y

]
=

[
0
0

]
. We only

need one nontrivial solution. The two rows are redundant. Both imply

x = y. Thus,

[
1
1

]
will work, as would any nonzero multiple of it. The

span of

[
1
1

]
is the eigenspace for λ = 2.

Suppose λ = −2.

Now we have A− (−2)I =

[
3 1
3 1

]
. a solution for

[
3 1
3 1

] [
x
y

]
=

[
0
0

]
is

[
−1
3

]
. The eigenspace is its span.

Example. Let A =

[
2 1
0 −1

]
. Find the eigenvalues and for each find

an eigenvector.

Solution. A − λI =

[
2− λ 1

0 −1− λ

]
. The determinate is (2 −

λ)(−1− λ). Thus, the eigenvalues are λ = 2 and −1.

Suppose λ = 2. Then A − 2I =

[
0 1
0 −3

]
. We need a solution to[

0 1
0 −3

] [
x
y

]
=

[
0
0

]
. Notice we must have y = 0, but x can take any

value. We can use

[
1
0

]
for an eigenvector. The eigenspace is just the

x-axis.

Suppose λ = −1. Now A+ I =

[
3 1
0 0

]
. A solution to

[
3 1
0 0

] [
x
y

]
=[

0
0

]
is

[
1
−3

]
. The span of this eigenvector is the eigenspace for λ = −1.

Example. Let A =

[
1 −3
1 2

]
. Find the eigenvalues and for each find

an eigenvector.
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Solution. det

[
1− λ −3

1 2− λ

]
= (1 − λ)(2 − λ) + 3 = λ2 − 3λ + 5.

The roots are

λ =
3±
√

9− 4 · 5
2

=
3± i

√
11

2
.

So, they are complex. The eigenvectors will be also.

Suppose λ = 3
2

+
√
11
2
i. Then we have to solve[

−1
2
−
√
11
2
i −3

1 1
2
−
√
11
2
i

][
x
y

]
=

[
0
0

]
.

It may not be obvious that the two equations this represents are re-

dundant. But, if you multiply the second row by −1
2
−
√
11
2
i it will turn

into the first row. Check this. From the bottom row we get

x+

(
1

2
−
√

11

2
i

)
y = 0.

Thus, we can use

[
1
2
−
√
11
2
i

−1

]
as an eigenvector.

Suppose λ = 3
2
−
√
11
2
i. I’ll let you check the details, but the result

is exactly the complex conjugate of the first case.

The geometric meaning is not obvious. It turns out complex eigen-
values are related to rotation.

Our Final Example. Let A =

 4 −4 −6
4 14 12
−3 −6 −3

. Find the eigenval-

ues and a basis for each eigenspace.

Solution. You can check that det(A− λI) = −(λ− 3)(λ− 6)2. Thus
the eigenvalues are 3 and 6 with multiplicity 2.

Suppose λ = 3. We need to solve

 1 −4 −6
4 11 12
−3 −6 −6

xy
z

 =

0
0
0

 .
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But, we did this in Example X! Thus


 2
−4
3

 is a basis for the

eigenspace for λ = 3.

Suppose λ = 6. We need to solve

−2 −4 −6
4 8 12
−3 −6 −9

xy
z

 =

0
0
0

 .

We did this in Example Y. Thus,


−2

1
0

 ,
−3

0
1

 is a basis for this

two dimensional eigenspace.


