
Section 9.3
Linearization

First, we provide some background material that is not in the text-
book.

Recall, for a vector v = (x1, x2, . . . , xn) ∈ Rn, that

||v|| =
√
x21 + x22 + · · ·+ x2n.

Definition. Let U be an open subset of Rn and let f : U → Rm.
We may write

f(x1, x2. . . . , xn) = (f1(x1, x2. . . . , xn), f2(x1, x2. . . . , xn), . . . , fm(x1, x2. . . . , xn)).

We say that f is differentiable at vo ∈ U if there exists an m × n
matrix T such that

lim
v→vo

||f(v)− f(vo)− T (v − vo)||
||v − vo||

= 0. (∗)

We call T the derivative of f at vo and use the notation T = Df(vo).
Note: we are regarding v and vo has column vectors now.

In the one variable case, f : R→ R, this is equivalent to

lim
x→xo

|f(x)− f(xo)−m(x− xo)|
|x− xo|

= 0,

which is equivalent to

lim
x→xo

f(x)− f(xo)

x− xo
= m = f ′(xo).

Theorem. Suppose, U ⊂ Rn is open and f : U → Rm is differen-
tiable at vo ∈ Rn. Then all partial derivatives of the fi, the components
of f , exist at vo and

Df(vo) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 ,
with all entries evaluated at vo. This matrix is often called the Jaco-
bian of f .
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Outline of Proof. Let h = v − vo. Then (∗) becomes

lim
h→0

||f(vo + h)− f(vo)− Th||
||h||

= 0.

It can be shown that this is equivalent to

lim
h→0

|fi(vo + h)− fi(vo)− (Th)i|
||h||

= 0,

for i = 1, . . . ,m, where (Th)i is the i-th entry of the column vector
Th.

We are given that these m limits exist. So, we can compute the
limits along any path where h → 0 and the result is the same. Let

h = aej. (Recall ej =
[
0 . . . 0 1 0 . . . 0

]T
, where the 1 is in

the j-th position.) Then we have

lim
a→0

|fi(vo + aej)− fi(vo)− a(Tej)i|
|a|

= 0,

for i = 1, . . . ,m and j = 1, . . . , n. This is equivalent to

lim
a→0

fi(vo + aej)− fi(vo)

a
= (Tej)i.

Now, Tej is just the j-th column of T , and (Tej)i is its i-th entry. Thus,
(Tej)i = Tij. The LHS is just the definition of the partial derivative
∂fi/∂xj. Thus,

Tij =
∂fi
∂xj

,

as claimed. �

Theorem. Let f : U → Rm, where U ⊂ Rn is open. Suppose, the
partial derivatives ∂fi/∂xj exist and are continuous in some open ball
around vo. Then f is differentiable at vo.

Proof. See Vector Calculus, by Marsden and Tromba, 3-rd Ed.,
Section 2.7, Theorem 9.

Example. Let f : R3 → R be given by f(x, y, z) = 3xyz2. Then

Df =
[
fx fy fz

]
=
[
3yz2 3xz2 6xyz

]
.

You may notice that this is the gradient of f .
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Example. Let f : R2 → R2 be given by f(x, y) =

[
x2 + 2y
3x+ 2y

]
. Find

Df(0, 0).

Solution. Df(x, y) =

[
2x 2
3 2

]
, which at (0, 0) is

[
0 2
3 2

]
.

Taylor’s Theorem. Let U ⊂ Rn be open, f : U → R, and assume
f is differentiable at vo ∈ U . Then

f(vo + h) = f(vo) +Df(vo) · h +R1(vo,h),

where

lim
h→0

R1(vo,h)

||h||
= 0.

Proof. See V.C., page 243.

Now we return to the textbook.

Definition. Let H(x, y) =

[
f(x, y)
g(x, y)

]
. Here f and g are real valued

functions. We say H is almost linear or is linearizable at (xo, yo) if

H(x− o, yo) =

[
0
0

]
and

H(x, y) = A

[
x− xo
y − yo

]
+

[
rf (x, y)
rg(x, y)

]
,

where A is a 2× 2 constant matrix, for R(x, y) =

[
rf (x, y)
rg(x, y)

]
we have

lim
(x,y)→(xo,yo)

||R(x, y)||
||(x, y)− (xo, yo)||

= 0.

The matrix A is called the linearization of H at (xo, yo). This defini-
tion can easily be generalized to the n× n case.

Example. Let H(x, y) =

[
2x− y + x2 − xy2
x+ 3y + xy + y7

]
. Linearize H at

(0, 0).

Solution. Clearly, H(0, 0) =

[
0
0

]
. Notice H(x, y) =

[
2 −1
1 3

] [
x
y

]
+[

x2 − xy2
xy + y7

]
.
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Let R(x, y) =

[
x2 − xy2
xy + y7

]
.

We need show ||R(x,y)||
||(x,y)|| → 0 as (x, y)→ (0, 0). This is not hard to see

using polar coordinates. Let c = cos θ and s = sin θ.

||R(x, y)||
||(x, y)||

=

(
(x2 − xy2)2 + (xy + y7)2

x2 + y2

)1/2

=

(
x4 − 2x3y2 + x2y4 + x2y2 + 2xy8 + y14

x2 + y2

)1/2

=

(
r4c4 − 2r5c3s2 + r6c2s4 + r4c2s2 + 2r9cs8 + r14s14

r2

)1/2

=
(
r2c4 − 2r3c3s2 + r4c2s4 + r2c2s2 + 2r7cs8 + r12s14

)1/2
≤ r2c2 + r

√
2r|c|

√
|c||s|+ r2|c|s2 + r|cs|+ r3

√
2r
√
|c|s4 + r6|s7|

≤ r2 + r
√

2r + r2 + r + r3
√

2r + r6

→ 0.

The first inequality is the Triangle Inequality (look it up if you
need to). The second is because sine and cosine never exceed 1 in
magnitude.

BTW, notice that DH(0, 0) =

[
2 −1
1 3

]
. Thus, we could have just

invoked Taylor’s Theorem. �

We want to apply these ideas to nonlinear differential equations.
Given

v′ = H(v(t))

The critical points (also called rest points, fixed points. or equi-
librium points) are points in the phasespace where v′ = 0. So, we
first find the critical points and then try to linearize at each of these.

Example 0. Find the critical points for the system below and find
the linearization at each.[

x′

y′

]
=

[
2x+ y − 3
x− 3y + 2

]
.

Solution. It is easy to see that the only critical point is (1, 1).

The Jacobian matrix is

[
2 1
1 −3

]
at all points, thus this is the lin-

earization matrix at (1, 1). In fact, the original system is equivalent



5

to [
x′

y′

]
=

[
2 1
1 −3

] [
x− 1
y − 1

]
.

(Check this.)

The eigenvalues and eigenvectors of the Jacobian are

−1

2
±
√

29

2
,

[
5±
√

29
2

]
Thus, near (1, 1) this system will behave like a saddle. See the sketch
below. �

In fact, this system is a true saddle. It can be solved using the
methods in Section 7.9 or simply made linear by a change of variables.

Example 1. Find the critical points for the system below and find
the linearization at each. Sketch the system and compare with a com-
puter. [

x′

y′

]
=

[
2x+ y2

x+ y + xy

]
.

Solution. Step 1. Find the critical points.

2x+ y2 = 0 =⇒ x = −y
2

2
.

x+ y + xy = 0 =⇒ −y
2

2
+ y − y3

2
= 0,

=⇒ y3 + y2 − 2y = 0,

=⇒ y(y + 2)(y − 1) = 0.

=⇒ y = 0, y = −2 or y = 1.



6

Thus, the critical points are (0, 0), (−2,−2) and (−1
2
, 1)

Step 2. Lineraize at each critical point. The Jacobian is

J =

[
2 2y

1 + y 1 + x

]
.

Then we have

J(0, 0) =

[
2 0
1 1

]
, J(−2,−2) =

[
2 −4
−1 −1

]
& J(−1

2
, 1) =

[
2 2
2 1

2

]
.

Step 3. Find the eigenvalues and eigenvectors for each of these.

(0, 0) 2,

[
1
1

]
; 1,

[
0
1

]
; unstable node, repller.

(−2,−2) −2,

[
1
1

]
; 3,

[
−4
1

]
; saddle point, unstable.

(−1
2
, 1) 5+

√
73

4
,

[
8√

73− 3

]
; 5−

√
73

4
,

[
8

−
√

73− 3

]
; saddle point, unstable.

Step 4. Draw local patches at the critical points. Try to fit it all
together.

Additional Observations:
For x = 0 and y < 0 we can see that x′ > 0 and y′ = y < 0.
For y = 0 and x > 0 we can see that x′ = 2x > 0 and y′ = x > 0.
For x = 0 and y > 0 we can see that x′ = y2 > 0 and y′ = y > 0.
For y = 0 and x < 0 we can see that x′ = 2x < 0 and y′ = x < 0.
Think about x = y.
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Step 5. Compare with computer.
The first plot was done with Maple. The code used is on the website

for the course under the link for Section 9.3 as Example 1. The second
was done on Wolfram Alpha using the widget at this link:
https://www.wolframalpha.com/widgets/view.jsp?id=9298fea31cf266903b3df7174b95ddd7
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Example 2. Find the critical points for the system below and find
the linearization at each.[

x′

y′

]
=

[
x2 + y2 − 9

3(y2 − 1)− x

]
.

Solution. Step 1. Find the critical points.

x′ = 0 =⇒ x2 + y2 = 9

y′ = 0 =⇒ x = 3y2 − 3

See the graph. We should be able to find 3 critical points.

y2 = x+3
3

=⇒ x2 + x+3
3

= 9 =⇒ 3x2 + x− 24 = 0.

Thus,

x =
−1±

√
1− 4 · 3 · (−24)

6
=
−1±

√
289

6
=
−1± 17

6
=

8

3
or − 3.

Now, if x = −3, then y2 = 0 and so y = 0. Thus, (−3, 0) is a critical
point.
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While if x = 8
3
, we have y2 = 17

9
, so y = ±

√
17
3

. Thus, (8
3
,±
√
17
3

) are
critical points.

Step 2. Linearize the system at each critical point.

We have J =

[
2x 2y
−1 6y

]
.

Therefore,

J(−3, 0) =

[
−6 0
−1 0

]
, J(8

3
,
√
17
3

) =

[
16
3

2
√
17
3

−1 2
√

17

]
and J(8

3
,−
√
17
3

) =

[
16
3
−2
√
17
3

−1 −2
√

17

]
.

Step 3. Find the eigenvalues and eigenvectors for each critical point.

(−3, 0) −6,

[
6
1

]
; 0,

[
0
1

]
; one attracting, one frozen.

(8
3
,
√
17
3

) ≈ 6.8± 0.8i spiral out, unstable.

(8
3
,−
√
17
3

) ≈ 5.5,

[
−13.8

1

]
; ≈ −8.5,

[
0.199

1

]
; saddle point, unstable.

Note: I did not bother with the eigenvectors when the eigenvalues
are complex, because they do not tell me that much. I can however
check a few points and determine if the spiral is going clockwise or
counterclockwise. The linearization is

x′ = 16
3
x+ 2

√
17
3
y, y′ = −x+ 2

√
17y.

Plug in (1, 0), (0, 1), (−1, 0) and (0,−1). See below. The spiral in this
system is clockwise.
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Step 4. Draw local patches at the critical points. Try to fit it all
together.

Step 5. Compare with computer. This time I only used Maple. The
code is on the course website. You should experiment with some other
graphing programs.


