
Section 9.1

This section is just a review of Chapter 7. Read it on your own.
Table 9.1.1 and Problems #20 and 21 give a good summary of the
stability types of nodes.

Section 9.2

The key ideas are ...

• Critical points. Points (x1, x2, . . . , xn) where all the deriva-
tives are zero, x′1 = x′2 = · · ·x′n = 0.
• Basin of attraction of a critical point or a periodic orbit. It

is the set of points for which the solution curve converges to the
given critical point or periodic solution.
• Separatrix. A solution curve that is part of the boundary of

a basin of attraction.

Example (# 7 in Problems). Consider the system of equations
below.

dx

dt
= 2x− x2 − xy

dy

dt
= 3y − 2y2 − 3xy

We will find the critical points and then use a computer to draw
direction fields and try to understand what is happening near each of
the critical points.

2x− x2 − xy = 0 =⇒ x(2− x− y) = 0 =⇒ x = 0 or x+ y = 2.
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3y−2y2−3xy = 0 =⇒ y(3−2y−3x) = 0 =⇒ y = 0 or 3x+2y = 3.

If x = 0, then y = 0 or y = 3/2. Thus, (0, 0) and (0, 3/2) are critical
points.

If y = 0, then x = 0 or x = 2. Thus, (2, 0) is also a critical point.

The only other case is x+y = 2 and 3x+2y = 3. This gives a fourth
critical point, (−1, 3).

Thus, the critical points are (0, 0), (0, 3/2), (2, 0) and (−1, 3).

Here is something else worth noting. If y = 0, then y′ = 0. So, if we
start on the x-axis we will stay on the x-axis. Likewise, if x = 0, then
x′ = 0. So, if we start on the y-axis we will stay on the y-axis.

Now we start plotting. The first plot is of the direction field for our
system over −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5. We can see the critical point
at (0, 0) is a repeller. The critical point at (2, 0) is an attractor - that
is, it is asymptotically stable. Although it looks kind of like a spiral,
we know the x-axis is never crossed by solution curves. So, maybe it
is an improper node. It is really hard to tell what is going on at the
other two critical points.

Now we will “zoom in” on each critical point. The plot below is for
−1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. We can see even more clearly that
(0, 0) is a repeller. In Section 9.3 we will learn how to verify such a
claim by finding a linear system that approximates our system in a
neighborhood of the critical point.
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The next plot is over 1 ≤ x ≤ 3 and −1 ≤ y ≤ 1. Now we get a
better view of the direction field near the critical point (2, 0). It looks
like an attracting improper node. A linear system that approximates
it would have a repeated negative eigenvalue.

Next we take a closer look at the neighborhood of the critical point
at (0, 3/2) on the y-axis. The plot below is over −1 ≤ x ≤ 1 and
0 ≤ y ≤ 3. It looks like we have a saddle point. Nearby points on
the y-axis are drawn toward this critical point. And it seems there is
a repelling direction at about a 45 degree angle to the y-axis.
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Finally, we look at a neighborhood of the critical point (−1, 3). The
plot below is for −2 ≤ x ≤ 0 and 2 ≤ y ≤ 4. It still looks really weird.

I used some more sophisticated tools to get a better view of the
behavior near (−1, 3) for the plot below. This critical point is asymp-
totically stable but one eigenvalue is extremely small.

Extra Credit!

1. Once we cover Section 9.3, find the linearization at each critical
point and find the eigenvalues. Do they match with the discussion
above?

2. Below is the Maple code used for first and last plots above. For
extra credit, redo these plots using matlab or some other program.

First load packages used for plots.

> with(DEtools):with(plots):with(plottools):

Code for first plot.
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> dfieldplot([D(x)(t)=2*x(t)-x(t)^2-x(t)*y(t), D(y)(t)=3*y(t)-2*y(t)^2-3*x(t)*y(t)],[x(t),y(t)],

t=0..1,x=-5..5,y=-5..5,color=black);

Code for last plot.

> cp:=disk([-1,3],0.02,color=green):

> vectorfield:=fieldplot([2*x-x^2-x*y,3*y-2*y^2-3*x*y],x=-2..0,y=2..4, arrows=slim, anchor=tail,

fieldstrength=maximal(2),grid=[20,20]):

> solutioncurves:=phaseportrait([D(x)(t)=2*x(t)-x(t)^2-x(t)*y(t), D(y)(t)=3*y(t)-2*y(t)^2-3*x(t)*y(t)],

[x(t),y(t)],t=0..3,[[x(0)=-1,y(0)=4],[x(0)=-1,y(0)=2],[x(0)=-1/2,y(0)=4]],x=-2..0,y=2..4,

linecolor=red,arrows=none):

> display(vectorfield,solutioncurves,cp);

Example (#20 in Problems).

Find the solution to
x′ = −x+ y
y′ = −x− y, using equation (17) on page

515.

Solution.

dy

dx
=

dy
dt
dx
dt

=
−x− y
−x+ y

=
x+ y

x− y
.

We will use the method given in #29 of §2.2.

Let v = y
x
. Then x+y

x−y =
1+ y

x

1− y
x

= 1+v
1−v .

Also, since y = xv we have dy
dx

= v + x dv
dx

; we are regarding v = y(x)
x

as an implicit function of x.

Now,

v + x
dv

dx
=

1 + v

1− v
=⇒ x

dv

dx
=

1 + v

1− v
− v =

1 + v2

1− v
.

Thus, this equation is separable. We may write it as∫
1− v
1 + v2

dv =

∫
1

x
dx = ln |x|+ C.

Now ∫
1− v
1 + v2

dv =

∫
1

1 + v2
dv −

∫
v

1 + v2
dv.

= arctan v − 1

2
ln(1 + v2) + C.

(For the second integral use u = 1 + v2.)
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We conclude that

arctan
(y
x

)
− 1

2
ln

(
1 +

y2

x2

)
= ln |x|+ C.

Or,

arctan
(y
x

)
− ln

(
|x|
√

1 +
y2

x2

)
= C.

Or,

arctan
(y
x

)
− ln

√
x2 + y2 = C

Given an initial condition, we could solve for C. But, notice some-
thing. The form of this equation is begging us to think about polar
coordinates, since

r =
√
x2 + y2 & θ = arctan

(y
x

)
.

Thus, we have
θ − ln r = C.

Or,
r = eθ−C = Ceθ (new C).

The graph of r = Ceθ is a spiral.
If we go back to the original problem, we can see that it is actually

linear. [
x′

y′

]
=

[
−x− y
−x+ y

]
=

[
−1 −1
−1 y

] [
x
y

]
If you check, you will find that the eigenvalues are 1±i. So, the solution
curves are indeed spirals.

In fact all the 2× 2 linear systems can be solved in this way. If[
x′

y′

]
=

[
a b
c d

] [
x
y

]
,

then
dy

dx
=

dy
dt
dx
dt

=
cx+ dy

ax+ by
=
c+ dv

a+ bv
,

where v = y
x
. Using dy

dx
= v + x dv

dx
we can show that the equation is

separable.

Occasionally, this method can be applied to nonlinear 2×2 systems,
but this is rare.


