
Supplement to 9.7
Equation’s of Liénard and van der Pol

Liénard’s equation is

d2u
dt2

+ f(u)du
dt

+ g(u) = 0. (∗)

We assume throughout that f and g have continuous first derivatives.
Suppose for now that γ = f(u) is a positive constant. If g(u) = ku for
k > 0, this is a model for a mass on a spring. If g(u) = a sinu, this is
a model for a pendulum. Thus, Liénard’s equation is a generalization
of these.

We can convert (∗) to a 2x2 system of first order equations. Let
x(t) = u(t) and y(t) = u′(t). Now, x′(t) = y(t) and y′(t) = u′′(t) =
−f(u)u′ − g(u) = −f(x)y − g(x). Or,[

x′

y′

]
=

[
y

−f(x)y − g(x)

]
. (∗∗)

Theorem. Assume g(0) = 0. Then (0, 0) is an almost linear critical
point of (∗∗). If f(0) > 0 and g′(0) > 0, then (0, 0) is asymptotically
stable. If f(0) < 0 and g′(0) < 0, then (0, 0) is unstable.

Proof. It is immediate that for (x, y) = (0, 0) we have x′ = 0 and y′ = 0.
To show the system is almost linear we rewrite the equation for y′ using
Taylor’s theorem applied to f and g.

g(x) = g(0) + g′(0)x+ rg(x)

f(x) = f(0) + f ′(0)x+ rf (x)

where rg(x)/x and rh(x)/x go to zero as x→ 0. Note, that this implies
rg(x) and rh(x) go to zero as x→ 0. We have,

y′ = −f(0)y−f ′(0)xy−rf (x)y−g′(0)x−rg(x) = −g′(0)x−f(0)y+(−f ′(0)xy−rf (x)y−rg(x)).

Then

−f ′(0)xy − rf (x)y − rg(x)

r
= −f ′(0)r cos θ sin θ − rf (x) sin θ − rg(x)

r
.

Taking the limit as r → 0, the first two terms go to zero and

|rg(x)|
r
≤ rg(x)

|x|
→ 0.

Thus, the system is almost linear.
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Now assume f(0) > 0 and g′(0) > 0. The Jacobian is

J =

[
0 1

−g′(0) −f(0)

]
.

Let p = −g′(0) and q = −f(0). Then p < 0 and q < 0. Now,

|J − λI| = λ2 − qλ− p.

Thus,

λ =
q ±

√
q2 + 4p

2
.

If q2 + 4p < 0, then Reλ = q
2
< 0 and (0, 0) is an asymptotically

stable spiral.
If q2 + 4p = 0, then λ = q

2
< 0 is a repeated root and thus. (0, 0) is

an asymptotically stable improper node.
If q2 + 4p > 0, then

√
q2 + 4p < q. Thus, both values of λ are

negative and (0, 0) is an asymptotically stable node.
The analysis for the case f(0) < 0 and g′(0) < 0 is similar. �

In the next theorem we make different assumptions on f and g that
enable us to show the existence of a period orbit.

Theorem. Assume in (∗∗) that f is even and g is odd. Assume
g(x) > 0 for x > 0. Let

F (x) =

∫ x

0

f(s) ds & G(x) =

∫ x

0

g(s) ds.

Suppose, G(x)→∞ and F (x)→∞ as x→∞. Suppose further that
there is a value xo > 0 such that F (x) < 0 for 0 < x < xo, F (x) > 0
for x > xo, and F (x) is increasing for x > xo.

Then equation (∗) has a unique periodic solution and in the phase
portrait for equation (∗∗) all other trajectories converge to the cor-
responding closed solution curve as t → ∞, expect of course for the
critical point (0, 0).

Example. Van der Pol’s equation is

d2u
dt2
− µ(1− u2)du

dt
+ u = 0,

where µ > 0. It is easy to verify the conditions are satisfied. Clearly,
f(u) = −µ(1− u2) is even, g(u) = u is odd, and both have continuous
derivatives.
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G(x) =

∫ x

0

s ds = 1
2
x2,

goes to infinity as x does.

F (x) =

∫ x

0

−µ(1− s2) ds = −µ
(
x− x3

3

)
= µu

(
x2

3
− 1
)
.

Thus, F (x) < 0 for 0 < x <
√

3 and F (x) > 0 and increasing for
x >
√

3. Further, F (x) → ∞ as x → ∞. Thus, the previous theorem
applies. A phase portrait for µ = 0.5 is show below.

We will not prove this theorem. It was proven by Levinson and
Smith in their article A general equation for relaxation Oscillations
in the Duke Journal of Mathematics, Vol. 9, 1942, pages 382–403.
They use the Poincaré-Bendixson theorem to show a periodic solution
exists, and then go on to show other trajectories converge to it. A
proof for the special case of the van der Pol equation can be found in
the textbook Differential Equations, Dynamical Systems, and Linear
Algebra, by Hirsch and Smale, pages 218–225.

Here are some additional examples you can experiment with. Add
some parameters.

• u′′ + (u2 − 1)u′ + u3 = 0.
• u′′ + (u4 − u2)u′ + u = 0.
• u′′ + (u2 − 1)u′ + 2u+ sinu = 0.
• u′′ + (u2 − 1)u′ + arctanu = 0.
• u′′ + (u4 − 1)u′ + u

1+u2 = 0.


