Supplement to 9.7
Equation’s of Liénard and van der Pol

Liénard’s equation is

ot f(u) + g(u) = 0. (%)

We assume throughout that f and g have continuous first derivatives.
Suppose for now that v = f(u) is a positive constant. If g(u) = ku for
k > 0, this is a model for a mass on a spring. If g(u) = asinu, this is
a model for a pendulum. Thus, Liénard’s equation is a generalization
of these.

We can convert (%) to a 2x2 system of first order equations. Let
x(t) = u(t) and y(t) = «/(t). Now, 2/(t) = y(t) and y/'(t) = u"(t) =
—f(uu' = g(u) = = f(z)y — g(x). Or,

m - {—f(x)f - g<x>] | (4]

Theorem. Assume ¢(0) = 0. Then (0,0) is an almost linear critical
point of (xx). If f(0) > 0 and ¢’(0) > 0, then (0,0) is asymptotically
stable. If f(0) < 0 and ¢'(0) < 0, then (0,0) is unstable.

Proof. 1t is immediate that for (z,y) = (0,0) we have 2’ = 0 and 3/ = 0.
To show the system is almost linear we rewrite the equation for 3/ using
Taylor’s theorem applied to f and g.

g(x) = g(0) + g'(0) + ry(z)
f(x) = f(0) + f1(0)x +rs()

where r4(z)/x and 7,(x)/z go to zero as x — 0. Note, that this implies
re(x) and 7, (x) go to zero as x — 0. We have,

Y = —f0)y—f'(0)xy—rf(2)y—g (0)x—r4(x) = =g (0)x—f(0)y+(—f'(0)wy—rs(2)y—"y(2)).
Then

—/"(O)ey = rz(ac)y — () = —f"(0)rcosfsin® — ry(z)sinf — @.

Taking the limit as » — 0, the first two terms go to zero and

(@)l _ @)

o7

Thus, the system is almost linear.
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Now assume f(0) > 0 and ¢’(0) > 0. The Jacobian is

/= [—g(')m) —fl(())} |

Let p = —¢'(0) and ¢ = —f(0). Then p < 0 and ¢ < 0. Now,
|J = M| =)\ — g\ —p.

Thus,

NS ¢ +4p
2

If ¢> +4p < 0, then ReX = £ < 0 and (0,0) is an asymptotically
stable spiral.

If ¢ +4p = 0, then A = £ < 0 is a repeated root and thus. (0,0) is
an asymptotically stable improper node.

If ¢> +4p > 0, then \/¢? +4p < ¢q. Thus, both values of \ are
negative and (0,0) is an asymptotically stable node.

The analysis for the case f(0) < 0 and ¢'(0) < 0 is similar. O

In the next theorem we make different assumptions on f and ¢ that
enable us to show the existence of a period orbit.

Theorem. Assume in (*x) that f is even and ¢ is odd. Assume
g(x) >0 for x > 0. Let

F(x):/omf(s)ds & G(x):/omg(s) ds.

Suppose, G(x) — oo and F(x) — 0o as x — 00. Suppose further that
there is a value x, > 0 such that F(z) < 0 for 0 < x < x,, F(z) > 0
for x > x,, and F(x) is increasing for > x,.

Then equation (*) has a unique periodic solution and in the phase
portrait for equation (%) all other trajectories converge to the cor-
responding closed solution curve as t — oo, expect of course for the
critical point (0, 0).

Example. Van der Pol’s equation is

%— (1—u2)%+u:0,

where 1 > 0. It is easy to verify the conditions are satisfied. Clearly,
f(u) = —p(1 —u?) is even, g(u) = u is odd, and both have continuous
derivatives.



goes to infinity as x does.

F(m):/ox—u(l—sz)dS:—u(x—:”—3) —,uu(——l)

Thus, F(z) < 0 for 0 < 2 < v/3 and F(z) > 0 and increasing for
x > /3. Further, F(x) — oo as x — co. Thus, the previous theorem
applies. A phase portrait for 4 = 0.5 is show below.
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We will not prove this theorem. It was proven by Levinson and
Smith in their article A general equation for relaxation Oscillations
in the Duke Journal of Mathematics, Vol. 9, 1942, pages 382-403.
They use the Poincaré-Bendixson theorem to show a periodic solution
exists, and then go on to show other trajectories converge to it. A
proof for the special case of the van der Pol equation can be found in
the textbook Differential Equations, Dynamical Systems, and Linear
Algebra, by Hirsch and Smale, pages 218-225.

Here are some additional examples you can experiment with. Add
some parameters

o v+ (u* —1)u' +u?=0.

o v+ (u* —u?)u' +u=0.

o v’ + (u? — 1)u' + 2u + sinu = 0.
o v+ (u? — )u +arctanu = 0.
ou”—l—(u4 D/ = 0.

1+u2



