Real Analysis Math 452⁻¹

Go over policies. Go over handout on groups, rings, fields, order relations and vector spaces. You should know or have seen somewhere most of Chapter 1 except Section 2. I will cover Section 2. Read all of Chapter 1 carefully. Read all the exercises. We will then cover Chapters 2, 3, 4 and maybe some of 6.

1. RATIONAL NUMBERS

We take the integers, $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$, as a given ordered commutative ring with a unit. The natural numbers \mathbb{N} are the positive integers. Then we define the *rational numbers* by

$$\mathbb{Q} = \{ (p,q) \, | \, p \in \mathbb{Z} \, \& \, q \in \mathbb{Z} \backslash \{0\} \} / \sim$$

where $(p_1, q_1) \sim (p_2, q_2)$ iff $p_1 q_2 = p_2 q_1$. We then define field operations by

$$(p_1, q_1) + (p_2, q_2) = (p_1q_2 + p_2q_1, q_1q_2) (p_1, q_1) \cdot (p_2, q_2) = (p_1p_2, q_1q_2).$$

One checks that \mathbb{Q} is a field. We identify \mathbb{Z} with the subring $\{(p, 1) \mid p \in \mathbb{Z}\}$. It is customary to write

"
$$\frac{p}{q}$$
" for " (p,q) ".

We can always express $\frac{p}{q}$ in *reduced form* where q > 0 and p and q have no prime factors in common².

We define an order on \mathbb{Q} by

$$\frac{p_1}{q_1} < \frac{p_2}{q_2} \Longleftrightarrow p_1 q_2 < p_2 q_1,$$

assuming reduced form. One checks this is an order and that the induced order on \mathbb{Z} is equivalent to its original order. One can show that \mathbb{Q} is an ordered field and \mathbb{Z} is an ordered subring.

We know that $\sqrt{2}$ is not in \mathbb{Q} . In fact for p prime and $n \ge 2$ there is no member $k/m \in \mathbb{Q}$ such that $(k/m)^n = p$.

Give some history. How to fix this?

 $^{^{1}}$ ©2014, Michael C. Sullivan, may be used for noncommercial educational purposes.

 $^{^{2}}$ The proof that this can be done is nontrivial and can be found in books on number theory.

There are basically two ways, *Dedekind cuts* and *Cauchy completion*. These start with \mathbb{Q} and build a new set \mathbb{R} called the *real numbers*. The results are isomorphic. We do cuts first.

2. Dedekind Cuts

Definition. A *cut* of \mathbb{Q} is a pair of subsets A and B of \mathbb{Q} such that (a) $A \cup B = \mathbb{Q}, A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset$.

(b) If $a \in A$ and $b \in B$, then a < b.

(c) A contains no largest element.

A cut is denoted by the symbol A|B.

Examples.

- 1. $A = (-\infty, 2)_{\mathbb{Q}}$, and $B = [2, \infty)_{\mathbb{Q}}$. This is clear.
- 2. $A = \{r \in \mathbb{Q} \mid r^2 < 2 \text{ or } r \leq 0\}, \text{ and } B = \mathbb{Q} \setminus A.$

Proof for 2. (a) is clear. (b) is easy. (c) will take some work. Let $r \in A$ and suppose it is the largest element. Clearly r > 0. Let $n \in \mathbb{N}$. Consider $r + \frac{1}{n}$. We will show there exists and n such that $(r + \frac{1}{n})^2 < 2$. This will imply that $r + \frac{1}{n} \in A$ and hence that r was not the largest element of A. It follows that A has no largest element. For this we need the following.

Fact. For every $r \in \mathbb{Q}$ with r > 0, there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < r$.

Proof. Let r = p/q with p and q in \mathbb{N} . If p > 1 use n = q. If p = 1 use n = 2q. In both cases $\frac{1}{n} < \frac{p}{q}$. \Box

Continuation of Proof for 2. We see $(r+\frac{1}{n})^2 = r^2 + \frac{2r}{n} + \frac{1}{n^2}$. We know $r^2 < 2$. If $\frac{2r}{n} + \frac{1}{n^2} < 2 - r^2$, then we will have $(r+\frac{1}{n})^2 < 2$. Choose n such that $0 < \frac{1}{n} < \frac{2-r^2}{2r+1}$. Then,

$$\frac{1}{n} < \frac{2-r^2}{2r+1} \le \frac{2-r^2}{2r+\frac{1}{n}} \implies \frac{2r}{n} + \frac{1}{n^2} < 2-r^2.$$

We are done. \Box

Definition. If A|B has $A = \{r \in \mathbb{Q} \mid r < \frac{p}{q}\}$ then we say A|B is a *rational cut*; it is denoted by $(\frac{p}{q})^*$.

Thus, if we identify $(\frac{p}{q})^*$ with $\frac{p}{q}$, the set of all rational cuts is a copy of \mathbb{Q} sitting inside the set of all cuts.

Definition. The set of all cuts is called the *real numbers* and is denoted \mathbb{R} .

We have to define the field operations and an order relation such that \mathbb{Q} is an ordered subfield. We will then show that \mathbb{R} is *complete*. For example, $\sqrt{2} \in \mathbb{R}$.

Definition. The cut A|B is < the cut C|D if A is a proper subset of C.

You can check that this is an order relation and that the induced order on \mathbb{Q} is the same as the original.

Addition. Let x = A|B and y = C|D be members of \mathbb{R} . Then x + y = E|F where

 $E = \{r \in \mathbb{Q} \mid \exists a \in A, c \in C \text{ s.t. } r = a + c\} \text{ and } F = \mathbb{Q} \backslash E.$

Claim. E|F is a cut of \mathbb{Q} .

Proof. (a) Since A and C are bounded above so is E. Hence $E \neq \mathbb{Q}$ and it is obvious that $E \neq \emptyset$, $F \neq \emptyset$, $E \cup F = \mathbb{Q}$ and E and F are disjoint.

(b) Let $e \in E$ and $f \in F$. We need to show e < f. Clearly $e \neq f$. Suppose f < e. Assume e = a + c where $a \in A$ and $c \in C$. Let $\delta = e - f > 0$. Then $f = e - \delta = a - \delta + c$. Since $a - \delta < a$, we have $a - \delta \notin B$ which implies $a - \delta \in A$. Thus $(a - \delta) + c \in E$, contradicting that $f \in F$. Thus, e < f.

(c) Suppose $e \in E$ is the largest element of E. Assume e = a + c with $a \in A$ and $c \in C$. Since A does not have a greatest element $\exists a' \in A$ s.t. a' > a. Then $e' = a' + c \in E$ and is larger than e. Thus E does not have a largest element.

We conclude that E|F is a cut. \Box

Claim. x + y = y + x.

Proof. Let x = A|B and y = C|D be real numbers, that is let them be cuts. Let E|F = x + y and E'|F' = y + x. Then $E = \{r \in \mathbb{Q} \mid \exists a \in A, c \in C \text{ s.t. } r = a + c\} = \{r \in \mathbb{Q} \mid \exists c \in C, a \in A \text{ s.t. } r = c + a\} = E'$. Thus E = E' so E|F = E'|F'. \Box

Claim. $x + 0^* = x$.

Proof. Let x = A|B and recall $0^* = (-\infty, 0)_{\mathbb{Q}}|[0, \infty)_{\mathbb{Q}}$. Let $E|F = x + 0^*$. Then

$$E = \{ r \in \mathbb{Q} \mid \exists a \in A, c \in (-\infty, 0)_{\mathbb{Q}} \text{ s.t. } r = a + c \}.$$

We will show E = A.

If $r \in E$ then r = a + c for some $a \in A$ and $c \in (\infty, 0)_{\mathbb{Q}}$. Since c < 0, r < a. But r < a implies $r \in A$. Hence $E \subset A$.

Let $a \in A$. Since A does not have a largest member, there exists a positive rational number δ such that $a + \delta \in A$. Then $-\delta \in (-\infty, 0)_{\mathbb{Q}}$. Since $a = (a + \delta) - \delta$ we get that $a \in E$. Hence A = E. This shows that as cuts A|B = E|F and hence that $x + 0^* = x$. \Box

Claim. For rational cuts

$$\left(\frac{p}{q}\right)^* + \left(\frac{r}{s}\right)^* = \left(\frac{p}{q} + \frac{r}{s}\right)^*.$$

Proof. Let $E|F = (p/q)^* + (r/s)^*$. Then

$$E = \{ x \in \mathbb{Q} \mid x = a + c \text{ for } a < p/q, c < r/s, a, c \in \mathbb{Q} \}.$$

Let $E' = \{y \in \mathbb{Q} \mid y < p/q + r/s\}$. Them the cut $E'|(\mathbb{Q} - E') = (p/q + r/s)^*$. We claim E = E'.

If $x \in E$ then x < p/q + r/s. Thus $x \in E'$ and we have that $E \subset E'$. Now suppose $y \in E'$. Let $\delta = p/q + r/s - y$. So $\delta > 0$ and is rational. Now

$$y = p/q + r/s - \delta = (p/q - \delta/2) + (r/s - \delta/2) \in E.$$

Thus $E' \subset E$.

Therefore E = E' and we are done. \Box

Minus. Let x = A|B. Define -x = A'|B' by $A' = \{r \in \mathbb{Q} \mid \exists b \in B, \text{ not the smallest element of } B, \text{ s.t. } r = -b\},$ and $B' = \mathbb{Q} \setminus A'.$

Example. Let $A = (-\infty, 5)_{\mathbb{Q}}$, $B = [5, \infty)_{\mathbb{Q}}$, and x = A|B. Then you can check that -x = A'|B' where $A' = (-\infty, -5)_{\mathbb{Q}}$ and $B' = [-5, \infty)_{\mathbb{Q}}$.

Claim. If $x \in \mathbb{R}$, then -x is indeed a cut.

Punt. You try this.

Claim. $x + (-x) = 0^*$.

Proof. Let x = A|B and -x = A'|B'. Let $Z = (-\infty, 0)_{\mathbb{Q}}$ and $E = \{r \in \mathbb{Q} \mid r = a + b, a \in A, b \in A'\}$. Then $0^* = Z|(\mathbb{Q} - Z)$ and $x + (-x) = E|(\mathbb{Q} - E)$. We will show E = Z.

Let $r \in E$. Then r = a + b for some $a \in A$ and $b \in A'$. Thus $-b \in B$. Hence a < -b, which implies a + b < 0. Therefore, $r \in Z$ and we have shown that $E \subset Z$.

Let $z \in Z$. We shall find an $a \in A$ such that $a + (-z) \in B$ and is not the smallest element of B. Then since z = a - (a - z) we will have $z \in E$. Suppose for every $a \in A$ that $a - z \notin B$. Since this means $a - z \in A$ we can use induction to show that $a - nz \notin B$ for all positive integers n. But, we claim that for every $b \in B$ there is an ns.t. b < a - nz, forcing $a - nz \in B$. Proof: There exists an positive integer n s.t. $0 < \frac{1}{n} < \frac{-z}{b-a}$. It follows that b < a - nz.

Thus, $\exists a \in A$ s.t. $a - z \in B$. If a - z is the smallest member of B replace a with $a' \in A$ s.t. a' > a. Such an a' exists because A has no largest member. Then a' - z is in B and is not the smallest member. Thus, we may assume a - z is not the smallest member of B. Hence $-a + z \in A'$.

Now, z = a + (-a + z) implies $z \in E$. Thus $Z \subset E$ and so Z = E as claimed. \Box

Claim. Addition in \mathbb{R} is associative.

Punt. See textbook³.

³Real Mathematical Analysis, by Charles Pugh, Springer 2002.

Claim. If x < y then x + z < y + z, for all x, y, z in \mathbb{R} .

Punt. See textbook.

So far we have that \mathbb{R} is an ordered abelian group with \mathbb{Q} an ordered subgroup.

Multiplication. Multiplication is more complicated because the definition depends on the signs. First suppose $0^* < x = A|B$ and $0^* < y = C|D$. Then we define $x \cdot y = E|F$ where

 $E = \{r \in \mathbb{Q} \mid r \le 0 \text{ or } \exists a \in A\&c \in C \text{ s.t. } a > 0, c > 0 \text{ and } r = ac\}.$

 $F = \mathbb{Q} \backslash E.$

For the other cases do the following.

If $0^* < x \& y < 0^*$, define $x \cdot y = -(x \cdot (-y))$. If $x < 0^* \& 0^* < y$, define $x \cdot y = -((-x) \cdot y)$. If $x < 0^* \& y < 0^*$, define $x \cdot y = (-x) \cdot (-y)$. And of course $x \cdot 0^* = 0^* \cdot x = 0^*$.

Theorem. With this definition \mathbb{R} is an ordered field, with \mathbb{Q} an ordered subfield.

Punt. See reference in textbook.

What did we gain by all of this?

Definition. Let X be an ordered set and let S be a nonempty subset. An *upper bound* for S is any $x \in X$ s.t. $\forall s \in S$ we have $s \leq x$. A *least upper bound* for S is an $x' \in X$ s.t. x' is an upper bound of S and for any other x that is an upper bound of S we have x' < x. When a least upper bound exists it is unique; it is called the supremum of S and denoted sup S.

There are parallel definitions for lower bounds, greatest lower bounds and the infimum of S, denoted inf S. If $S \neq \emptyset$ and has no upper bound we define $\sup S = \infty$. If $S \neq \emptyset$ and has no lower bound then we define inf $S = -\infty$. We also define $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$.

Example. Sup $\{1 - \frac{1}{n} | n \in \mathbb{N}, n \ge 1\} = 1$, while the infimum is zero.

6

Definition. An ordered set X has the *least upper bound property* if for all nonempty subsets S with an *upper bound* there is a *least upper bound*.

There is a parallel definition of the greatest lower bound property.

Theorem. The set of real numbers has the least upper bound property.

Proof. Let $\mathcal{C} \subset \mathbb{R}$ be nonempty and bounded by X|Y. Let $C = \{a \in \mathbb{Q} \mid \exists A | B \in \mathcal{C} \text{ with } a \in A\}$, and $D = \mathbb{Q} \setminus C$.

Claim. C|D is a cut.

Proof. (a) If $A|B \in \mathcal{C}$ then $A \subset C$, so $C \neq \emptyset$. Let $y \in Y$. $\forall A|B \in \mathcal{C}, A \subset X$, and so y is bigger than every $a \in A$. Thus $y \notin C$ and thus $D \neq \emptyset$. (b) Let $c \in C$ and $d \in D$. $\exists A^*|B^* \in \mathcal{C}$ s.t. $c \in A^*$. Since $d \notin A$ $\forall A|B \in \mathcal{C}$ we know $d \notin A^*$. Thus $d \in B^*$. This means c < d. (c) Let $c \in C$. By definition $\exists A|B \in \mathcal{C}$ s.t. $c \in A$. $\exists a \in A$ s.t. c < a. Then $a \in C$, so c could not be the largest element of C.

Claim. C|D is a the least upper bound of C.

Proof. Let z = C|D and let z' = C'|D' be any upper bound of \mathcal{C} . $\forall A|B \in \mathcal{C}$, we know that $A|B \leq C'|D'$ implies $A \subset C'$. Thus $C \subset C'$ and $z \leq z'$ as required.

These two Claims prove the Theorem. \Box

Theorem. The $\sqrt{2}$ exists as a real number. That is, there exists $x \in \mathbb{R}$ s.t. $x^2 = 2$.

Proof. Let $A = \{r \in \mathbb{Q} \mid r \leq 0 \text{ or } r^2 < 2\} \subset \mathbb{R}$. Then A is bounded above by 2, for if not $\exists a \in A \text{ s.t. } a^2 < 2 \text{ and } a > 2$, implying 4 < 2. Let x = l.u.b. A. Clearly x > 0.

Suppose $x^2 < 2$. We will show $\exists n \in \mathbb{N}$ s.t. $\left(x + \frac{1}{n}\right)^2 < 2$; hence $x + \frac{1}{n} \in A$, contradicting that x = 1.u.b. A. We need the following.

Fact. If x is any real positive number, there exists an $n \in \mathbb{N}$ s.t. $0 < \frac{1}{n} < x$.

Proof. Suppose x equals the cut P|Q. Since x > 0 there exists a positive rational number r in P. Then, identifying r with r^* we have r < x. Then choose n so that $0 < \frac{1}{n} < r < x$.

You can check that $\frac{2-x^2}{2x+1} > 0$. Thus $\exists n \in \mathbb{N}$ s.t. $\frac{1}{n} < \frac{2-x^2}{2x+1}$. Thus $\frac{2x+1}{n} < 2-x^2$. Therefore,

$$\left(x+\frac{1}{n}\right)^2 = x^2 + \frac{2x}{n} + \frac{1}{n^2} = x^2 + \frac{2x+\frac{1}{n}}{n} \le x^2 + \frac{2x+1}{n} < x^2 + 2 - x^2 = 2.$$

Suppose $x^2 > 2$. Choose $m \in \mathbb{N}$ s.t. $\frac{1}{m} < \frac{x^2 - 2}{2x}$. Thus $\frac{2x}{m} < x^2 - 2$. Since x = 1.u.b. $A, \exists x_0 \in A$ s.t. $x - \frac{1}{m} < x_0$. Thus,

$$2 < x^{2} - \frac{2x}{m} < x^{2} - \frac{2x}{m} + \frac{1}{m^{2}} = \left(x - \frac{1}{m}\right)^{2} < x_{0}^{2}.$$

Thus, $2 < x_0^2$, which contradicts that $x_0 \in A$.

We conclude that $x^2 = 2$ and are thus justified in defining $\sqrt{2} = x$.

Fact. $\forall x \in [0, \infty)$ and $n \in \mathbb{N} \exists ! y \in [0, \infty)$ s.t. $y^n = x$. See Exercise 15 in Chapter 1 of the textbook. We write $y = \sqrt[n]{x}$ or $y = x^{\frac{1}{n}}$.

Fact. For even $n \in \mathbb{N}$ and x > 0 there are two solutions to $y^n = x$, and each is the negative of the other. For odd $n \in \mathbb{N}$ the solution to $y^n = x$ is unique.

Remark. To see the connection between cuts and the usual decimal representation of real numbers see Exercise 16 in Chapter 1 of the textbook.

Definition. Let $(a_n) = (a_1, a_2, a_3, ...)$ be an infinite sequence in \mathbb{R} and let $b \in \mathbb{R}$. We say

$$\lim_{n \to \infty} a_n = b \text{ or just } a_n \to b$$

if $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \text{ s.t. } n \geq N \text{ implies } |a_n - b| < \epsilon.$ In words (a_n) converges to b.

Definition. An infinite sequence (a_n) satisfies the Cauchy condition and is call a Cauchy sequence if $\forall \epsilon > 0 \ \exists N \in \mathbb{N}$ s.t. $n, m \geq N \implies$ $|a_n - a_m| < \epsilon$.

Theorem. A sequence (a_n) converges to a limit iff it is Cauchy.

Proof. Suppose $a_n \to b$. Let $\epsilon > 0$ be given. Then $\exists N \in \mathbb{N}$ s.t. $n \ge N \implies |a_n - b| < \epsilon/2$. Thus, if $n, m \ge N$ we have

$$|a_n - a_m| = |(a_n - b) - (a_m - b)| \le |a_n - b| + |a_m - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus, (a_n) is Cauchy.

The other direction is harder. Suppose (a_n) is Cauchy. Let $A = \{a_n \mid n \ge 1\}$. This is called the *underlying set* for (a_n) .

Claim. A is bounded (above and below).

Proof. Let $\epsilon = 1$. Then $\exists n \in \mathbb{N}_1$ s.t. $n, m \geq N_1$ implies $|a_n - a_m| < 1$. Thus $\forall n \geq N_1$ we have $|a_n - a_{N_1}| < 1$. Clearly $A_{N_1} = \{a_1, a_2, \ldots, a_{N_1}\}$ is bounded, and so is $A'_{N_1} = A_{N_1} \cup \{a_{N_1} - 1, a_{N_1} + 1\}$. Assume $A'_{N_1} \subset [-M, M]$. Since for $n \geq N_1$ we have $a_{N_1} - 1 < a_n < a_{N_1} + 1$ we know that $A \subset [-M, M]$. \Box

Now, what is a good candidate for the limit?

Let $S = \{s \in [-M, M] \mid a_n \geq s \text{ for infinitely many } n\}$. Since $-M \in S$ we know $S \neq \emptyset$. Since M is an upper bound for $S, \exists a \text{ l.u.b. of } S$. Let b = l.u.b. S.

Claim. $a_n \rightarrow b$.

Proof. Let $\epsilon > 0$ be given. What do we need? We need to find $N \in \mathbb{N}$ s.t. $n \ge N \implies |a_n - b| < \epsilon$. What do we know? There exists $N_2 \in \mathbb{N}$ s.t. $n, m \ge N_2 \implies |a_n - a_m| < \epsilon$.

We have to use the fact that b = 1.u.b. S. This means $b + \epsilon \notin S$ no matter how small ϵ is. Thus, only finitely many of the a_n are greater than $b + \epsilon$. Thus for some $N_3 \in \mathbb{N}$, $n \ge N_3 \implies a_n \le b + \epsilon$. We may assume $N_3 > N_2$.

 $\exists s \in S \text{ s.t. } s > b - \epsilon$. Thus $a_n \geq s > b - \epsilon$ for infinitely many n. $\exists N \geq N_3 \text{ s.t. } a_N > b - \epsilon$. But then also $a_N < b + \epsilon$. Let $n \geq N$. We have

 $|a_n - b| \le |a_n - a_N| + |a_N - b| < \epsilon + \epsilon = 2\epsilon.$

Back up and replace ϵ with $\epsilon/2$ as needed. This proves the Claim and the Theorem. \Box

An alternative to cuts is to use Cauchy sequences in \mathbb{Q} to define \mathbb{R} . Basically you take the collections of all Cauchy sequences and identify two if $|a_n - b_n| \to 0$. Then define $+, \cdot$ and < to get \mathbb{R} . This \mathbb{R} is isomorphic to the \mathbb{R} we get from Dedekind cuts by a map that preserves order. This will be covered in the more general setting of *metric spaces* in section 2.7 of the textbook.