
Real Analysis Math 452 1

Go over policies. Go over handout on groups, rings, fields, order
relations and vector spaces. You should know or have seen somewhere
most of Chapter 1 except Section 2. I will cover Section 2. Read all of
Chapter 1 carefully. Read all the exercises. We will then cover Chapters
2, 3, 4 and maybe some of 6.

1. Rational Numbers

We take the integers, Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}, as a given
ordered commutative ring with a unit. The natural numbers N are the
positive integers. Then we define the rational numbers by

Q = {(p, q) | p ∈ Z & q ∈ Z\{0}}/ ∼

where (p1, q1) ∼ (p2, q2) iff p1q2 = p2q1. We then define field operations
by

(p1, q1) + (p2, q2) = (p1q2 + p2q1, q1q2)

(p1, q1) · (p2, q2) = (p1p2, q1q2).

One checks that Q is a field. We identify Z with the subring {(p, 1) | p ∈
Z}. It is customary to write

“
p

q
” for “(p, q)”.

We can always express p
q in reduced form where q > 0 and p and q have

no prime factors in common2.
We define an order on Q by

p1

q1
<
p2

q2
⇐⇒ p1q2 < p2q1,

assuming reduced form. One checks this is an order and that the in-
duced order on Z is equivalent to its original order. One can show that
Q is an ordered field and Z is an ordered subring.

We know that
√

2 is not in Q. In fact for p prime and n ≥ 2 there is
no member k/m ∈ Q such that (k/m)n = p.

Give some history. How to fix this?

1 c©2014, Michael C. Sullivan, may be used for noncommercial educational purposes.
2The proof that this can be done is nontrivial and can be found in books on number theory.
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There are basically two ways, Dedekind cuts and Cauchy completion.
These start with Q and build a new set R called the real numbers. The
results are isomorphic. We do cuts first.

2. Dedekind Cuts

Definition. A cut of Q is a pair of subsets A and B of Q such that
(a) A ∪B = Q, A 6= ∅, B 6= ∅, A ∩B = ∅.
(b) If a ∈ A and b ∈ B, then a < b.
(c) A contains no largest element.

A cut is denoted by the symbol A|B.

Examples.
1. A = (−∞, 2)Q, and B = [2,∞)Q. This is clear.
2. A = {r ∈ Q | r2 < 2 or r ≤ 0}, and B = Q\A.

Proof for 2. (a) is clear. (b) is easy. (c) will take some work. Let
r ∈ A and suppose it is the largest element. Clearly r > 0. Let n ∈ N.
Consider r+ 1

n . We will show there exists and n such that (r+ 1
n)2 < 2.

This will imply that r + 1
n ∈ A and hence that r was not the largest

element of A. It follows that A has no largest element. For this we
need the following.

Fact. For every r ∈ Q with r > 0, there exists n ∈ N such that
0 < 1

n < r.

Proof. Let r = p/q with p and q in N. If p > 1 use n = q. If p = 1
use n = 2q. In both cases 1

n <
p
q . �

Continuation of Proof for 2. We see (r+ 1
n)2 = r2 + 2r

n + 1
n2 . We know

r2 < 2. If 2r
n + 1

n2 < 2 − r2, then we will have (r + 1
n)2 < 2. Choose n

such that 0 < 1
n <

2−r2

2r+1 . Then,

1

n
<

2− r2

2r + 1
≤ 2− r2

2r + 1
n

=⇒ 2r

n
+

1

n2 < 2− r2.

We are done. �

Definition. If A|B has A = {r ∈ Q | r < p
q} then we say A|B is a

rational cut; it is denoted by (p
q )∗.
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Thus, if we identify (p
q )∗ with p

q , the set of all rational cuts is a copy
of Q sitting inside the set of all cuts.

Definition. The set of all cuts is called the real numbers and is
denoted R.

We have to define the field operations and an order relation such that
Q is an ordered subfield. We will then show that R is complete. For
example,

√
2 ∈ R.

Definition. The cut A|B is < the cut C|D if A is a proper subset
of C.

You can check that this is an order relation and that the induced
order on Q is the same as the original.

Addition. Let x = A|B and y = C|D be members of R. Then
x+ y = E|F where

E = {r ∈ Q | ∃a ∈ A, c ∈ C s.t. r = a+ c} and
F = Q\E.

Claim. E|F is a cut of Q.

Proof. (a) Since A and C are bounded above so is E. Hence E 6= Q
and it is obvious that E 6= ∅, F 6= ∅, E ∪ F = Q and E and F are
disjoint.

(b) Let e ∈ E and f ∈ F . We need to show e < f . Clearly e 6= f .
Suppose f < e. Assume e = a + c where a ∈ A and c ∈ C. Let
δ = e − f > 0. Then f = e − δ = a − δ + c. Since a − δ < a, we
have a − δ /∈ B which implies a − δ ∈ A. Thus (a − δ) + c ∈ E,
contradicting that f ∈ F . Thus, e < f .

(c) Suppose e ∈ E is the largest element of E. Assume e = a + c
with a ∈ A and c ∈ C. Since A does not have a greatest element
∃a′ ∈ A s.t. a′ > a. Then e′ = a′ + c ∈ E and is larger than e.
Thus E does not have a largest element.
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We conclude that E|F is a cut. �

Claim. x+ y = y + x.

Proof. Let x = A|B and y = C|D be real numbers, that is let them
be cuts. Let E|F = x+ y and E ′|F ′ = y + x. Then E = {r ∈ Q | ∃a ∈
A, c ∈ C s.t. r = a+ c} = {r ∈ Q | ∃c ∈ C, a ∈ A s.t. r = c+ a} = E ′.
Thus E = E ′ so E|F = E ′|F ′. �

Claim. x+ 0∗ = x.

Proof. Let x = A|B and recall 0∗ = (−∞, 0)Q|[0,∞)Q. Let E|F =
x+ 0∗. Then

E = {r ∈ Q | ∃a ∈ A, c ∈ (−∞, 0)Q s.t. r = a+ c}.

We will show E = A.
If r ∈ E then r = a+ c for some a ∈ A and c ∈ (∞, 0)Q. Since c < 0,

r < a. But r < a implies r ∈ A. Hence E ⊂ A.
Let a ∈ A. Since A does not have a largest member, there exists a

positive rational number δ such that a+ δ ∈ A. Then −δ ∈ (−∞, 0)Q.
Since a = (a + δ) − δ we get that a ∈ E. Hence A = E. This shows
that as cuts A|B = E|F and hence that x+ 0∗ = x. �

Claim. For rational cuts(
p

q

)∗
+

(r
s

)∗
=

(
p

q
+
r

s

)∗
.

Proof. Let E|F = (p/q)∗ + (r/s)∗. Then

E = {x ∈ Q |x = a+ c for a < p/q, c < r/s, a, c ∈ Q}.

Let E ′ = {y ∈ Q | y < p/q + r/s}. Them the cut E ′|(Q − E ′) =
(p/q + r/s)∗. We claim E = E ′.

If x ∈ E then x < p/q + r/s. Thus x ∈ E ′ and we have that E ⊂ E ′.
Now suppose y ∈ E ′. Let δ = p/q + r/s− y. So δ > 0 and is rational.
Now

y = p/q + r/s− δ = (p/q − δ/2) + (r/s− δ/2) ∈ E.
Thus E ′ ⊂ E.

Therefore E = E ′ and we are done. �
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Minus. Let x = A|B. Define −x = A′|B′ by
A′ = {r ∈ Q | ∃b ∈ B, not the smallest element of B, s.t. r = −b},

and
B′ = Q\A′.

Example. Let A = (−∞, 5)Q, B = [5,∞)Q, and x = A|B. Then you
can check that −x = A′|B′ where A′ = (−∞,−5)Q and B′ = [−5,∞)Q.

Claim. If x ∈ R, then −x is indeed a cut.

Punt. You try this.

Claim. x+ (−x) = 0∗.

Proof. Let x = A|B and −x = A′|B′. Let Z = (−∞, 0)Q and
E = {r ∈ Q | r = a + b, a ∈ A, b ∈ A′}. Then 0∗ = Z|(Q − Z) and
x+ (−x) = E|(Q− E). We will show E = Z.

Let r ∈ E. Then r = a+ b for some a ∈ A and b ∈ A′. Thus −b ∈ B.
Hence a < −b, which implies a+ b < 0. Therefore, r ∈ Z and we have
shown that E ⊂ Z.

Let z ∈ Z. We shall find an a ∈ A such that a + (−z) ∈ B and
is not the smallest element of B. Then since z = a − (a − z) we will
have z ∈ E. Suppose for every a ∈ A that a − z /∈ B. Since this
means a− z ∈ A we can use induction to show that a− nz /∈ B for all
positive integers n. But, we claim that for every b ∈ B there is an n
s.t. b < a − nz, forcing a − nz ∈ B. Proof: There exists an positive
integer n s.t. 0 < 1

n <
−z
b−a . It follows that b < a− nz.

Thus, ∃ a ∈ A s.t. a − z ∈ B. If a − z is the smallest member of B
replace a with a′ ∈ A s.t. a′ > a. Such an a′ exists because A has no
largest member. Then a′ − z is in B and is not the smallest member.
Thus, we may assume a − z is not the smallest member of B. Hence
−a+ z ∈ A′.

Now, z = a+ (−a+ z) implies z ∈ E. Thus Z ⊂ E and so Z = E as
claimed. �

Claim. Addition in R is associative.

Punt. See textbook3.

3Real Mathematical Analysis, by Charles Pugh, Springer 2002.
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Claim. If x < y then x+ z < y + z, for all x, y, z in R.

Punt. See textbook.

So far we have that R is an ordered abelian group with Q an ordered
subgroup.

Multiplication. Multiplication is more complicated because the
definition depends on the signs. First suppose 0∗ < x = A|B and
0∗ < y = C|D. Then we define x · y = E|F where

E = {r ∈ Q | r ≤ 0 or ∃a ∈ A&c ∈ C s.t. a > 0, c > 0 and r =
ac}.
F = Q\E.

For the other cases do the following.
If 0∗ < x & y < 0∗, define x · y = −(x · (−y)).
If x < 0∗ & 0∗ < y, define x · y = −((−x) · y).
If x < 0∗ & y < 0∗, define x · y = (−x) · (−y).
And of course x · 0∗ = 0∗ · x = 0∗.

Theorem. With this definition R is an ordered field, with Q an
ordered subfield.

Punt. See reference in textbook.

What did we gain by all of this?

Definition. Let X be an ordered set and let S be a nonempty subset.
An upper bound for S is any x ∈ X s.t. ∀s ∈ S we have s ≤ x. A least
upper bound for S is an x′ ∈ X s.t. x′ is an upper bound of S and for
any other x that is an upper bound of S we have x′ < x. When a least
upper bound exists it is unique; it is called the supremum of S and
denoted supS.

There are parallel definitions for lower bounds, greatest lower bounds
and the infimum of S, denoted inf S. If S 6= ∅ and has no upper bound
we define supS =∞. If S 6= ∅ and has no lower bound then we define
inf S = −∞. We also define sup ∅ = −∞ and inf ∅ =∞.

Example. Sup {1 − 1
n |n ∈ N, n ≥ 1} = 1, while the infimum is

zero.
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Definition. An ordered set X has the least upper bound property if
for all nonempty subsets S with an upper bound there is a least upper
bound.

There is a parallel definition of the greatest lower bound property.

Theorem. The set of real numbers has the least upper bound prop-
erty.

Proof. Let C ⊂ R be nonempty and bounded by X|Y . Let
C = {a ∈ Q | ∃A|B ∈ C with a ∈ A}, and
D = Q\C.

Claim. C|D is a cut.

Proof. (a) If A|B ∈ C then A ⊂ C, so C 6= ∅. Let y ∈ Y .
∀A|B ∈ C, A ⊂ X, and so y is bigger than every a ∈ A. Thus
y /∈ C and thus D 6= ∅.
(b) Let c ∈ C and d ∈ D. ∃A∗|B∗ ∈ C s.t. c ∈ A∗. Since d /∈ A
∀A|B ∈ C we know d /∈ A∗. Thus d ∈ B∗. This means c < d.
(c) Let c ∈ C. By definition ∃A|B ∈ C s.t. c ∈ A. ∃ a ∈ A s.t.
c < a. Then a ∈ C, so c could not be the largest element of C.

Claim. C|D is a the least upper bound of C.

Proof. Let z = C|D and let z′ = C ′|D′ be any upper bound of
C. ∀A|B ∈ C, we know that A|B ≤ C ′|D′ implies A ⊂ C ′. Thus
C ⊂ C ′ and z ≤ z′ as required.

These two Claims prove the Theorem. �

Theorem. The
√

2 exists as a real number. That is, there exists
x ∈ R s.t. x2 = 2.

Proof. Let A = {r ∈ Q | r ≤ 0 or r2 < 2} ⊂ R. Then A is bounded
above by 2, for if not ∃ a ∈ A s.t. a2 < 2 and a > 2, implying 4 < 2.
Let x = l.u.b. A. Clearly x > 0.

Suppose x2 < 2. We will show ∃ n ∈ N s.t.
(
x+ 1

n

)2
< 2; hence

x+ 1
n ∈ A, contradicting that x = l.u.b. A. We need the following.
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Fact. If x is any real positive number, there exists an n ∈ N s.t.
0 < 1

n < x.

Proof. Suppose x equals the cut P |Q. Since x > 0 there exists
a positive rational number r in P . Then, identifying r with r∗ we
have r < x. Then choose n so that 0 < 1

n < r < x.

You can check that
2− x2

2x+ 1
> 0. Thus ∃ n ∈ N s.t.

1

n
<

2− x2

2x+ 1
.

Thus
2x+ 1

n
< 2− x2. Therefore,

(
x+

1

n

)2

= x2+
2x

n
+

1

n2 = x2+
2x+ 1

n

n
≤ x2+

2x+ 1

n
< x2+2−x2 = 2.

Suppose x2 > 2. Choose m ∈ N s.t.
1

m
<
x2 − 2

2x
. Thus

2x

m
< x2 − 2.

Since x = l.u.b. A, ∃ x0 ∈ A s.t. x− 1
m < x0. Thus,

2 < x2 − 2x

m
< x2 − 2x

m
+

1

m2 =

(
x− 1

m

)2

< x2
0.

Thus, 2 < x2
0, which contradicts that x0 ∈ A.

We conclude that x2 = 2 and are thus justified in defining
√

2 = x.
�

Fact. ∀ x ∈ [0,∞) and n ∈ N ∃! y ∈ [0,∞) s.t. yn = x. See Exercise

15 in Chapter 1 of the textbook. We write y = n
√
x or y = x

1
n .

Fact. For even n ∈ N and x > 0 there are two solutions to yn = x,
and each is the negative of the other. For odd n ∈ N the solution to
yn = x is unique.

Remark. To see the connection between cuts and the usual decimal
representation of real numbers see Exercise 16 in Chapter 1 of the
textbook.
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3. Cauchy Sequences

Definition. Let (an) = (a1, a2, a3, ...) be an infinite sequence in R
and let b ∈ R. We say

lim
n→∞

an = b or just an → b

if ∀ε > 0 ∃N ∈ N s.t. n ≥ N implies |an − b| < ε. In words (an)
converges to b.

Definition. An infinite sequence (an) satisfies the Cauchy condition
and is call a Cauchy sequence if ∀ε > 0 ∃N ∈ N s.t. n,m ≥ N =⇒
|an − am| < ε.

Theorem. A sequence (an) converges to a limit iff it is Cauchy.

Proof. Suppose an → b. Let ε > 0 be given. Then ∃N ∈ N s.t.
n ≥ N =⇒ |an − b| < ε/2. Thus, if n,m ≥ N we have

|an − am| = |(an − b)− (am − b)| ≤ |an − b|+ |am − b| <
ε

2
+
ε

2
= ε.

Thus, (an) is Cauchy.
The other direction is harder. Suppose (an) is Cauchy. Let A =
{an |n ≥ 1}. This is called the underlying set for (an).

Claim. A is bounded (above and below).

Proof. Let ε = 1. Then ∃n ∈ N1 s.t. n,m ≥ N1 implies |an −
am| < 1. Thus ∀n ≥ N1 we have |an − aN1

| < 1. Clearly AN1
=

{a1, a2, . . . , aN1
} is bounded, and so is A′N1

= AN1
∪{aN1

− 1, aN1
+

1}. Assume A′N1
⊂ [−M,M ]. Since for n ≥ N1 we have aN1

− 1 <
an < aN1

+ 1 we know that A ⊂ [−M,M ]. �

Now, what is a good candidate for the limit?
Let S = {s ∈ [−M,M ] | an ≥ s for infinitely many n}. Since −M ∈

S we know S 6= ∅. Since M is an upper bound for S, ∃ a l.u.b. of S.
Let b = l.u.b. S.

Claim. an → b.
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Proof. Let ε > 0 be given. What do we need? We need to find
N ∈ N s.t. n ≥ N =⇒ |an − b| < ε. What do we know? There
exists N2 ∈ N s.t. n,m ≥ N2 =⇒ |an − am| < ε.

We have to use the fact that b = l.u.b. S. This means b + ε /∈ S no
matter how small ε is. Thus, only finitely many of the an are greater
than b + ε. Thus for some N3 ∈ N, n ≥ N3 =⇒ an ≤ b + ε. We may
assume N3 > N2.
∃ s ∈ S s.t. s > b− ε. Thus an ≥ s > b− ε for infinitely many n. ∃

N ≥ N3 s.t. aN > b − ε. But then also aN < b + ε. Let n ≥ N . We
have

|an − b| ≤ |an − aN |+ |aN − b| < ε+ ε = 2ε.

Back up and replace ε with ε/2 as needed. This proves the Claim and
the Theorem. �

An alternative to cuts is to use Cauchy sequences in Q to define R.
Basically you take the collections of all Cauchy sequences and identify
two if |an − bn| → 0. Then define +, · and < to get R. This R is
isomorphic to the R we get from Dedekind cuts by a map that preserves
order. This will be covered in the more general setting of metric spaces
in section 2.7 of the textbook.


