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Summary In two of his books, Ross Honsberger presented several proofs of the fact that the point A on the
circular arc B̂C for which AB + AC is maximum is the midpoint of the arc. In this note, we give three more
proofs and examine how these proofs and those of Honsberger are related to propositions in Euclid’s Elements
and, less strongly, to other problems in geometry such as the broken chord theorem, Breusch’s lemma, Urquhart’s
theorem, and the Steiner-Lehmus theorem.
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There are many theorems that are widely known among serious students of mathemat-
ics, but there are far fewer proofs that are part of our common culture. One of the best
known proofs is Georg Cantor’s diagonalization argument showing the uncountability
of the real numbers R. Few people know, however, that this elegant argument was not
Cantor’s first proof of this theorem, or, indeed, even his second! More than a decade
and a half before the diagonalization argument appeared Cantor published a different
proof of the uncountability of R. The result was given, almost as an aside, in a pa-
per [1] whose most prominent result was the countability of the algebraic numbers.
Historian of mathematics Joseph Dauben has suggested that Cantor was deliberately
downplaying the most important result of the paper in order to circumvent expected
opposition from Leopold Kronecker, an important mathematician of the era who was
an editor of the journal in which the result appeared [4, pp. 67–69]. A fascinating ac-
count of the conflict between Cantor and Kronecker can be found in Hal Hellman’s
book [6]. A decade later Cantor published a different proof [2] generalizing this result
to perfect subsets of R

k . This still preceded the famous diagonalization argument by
six years.

Mathematical culture today is very different from what it was in Cantor’s era. It is
hard for us to understand how revolutionary his ideas were at the time. Many mathe-
maticians of the day rejected the idea that infinite sets could have different cardinali-
ties. Through much of Cantor’s career many of his most important ideas were treated
with skepticism by some of his contemporaries (see [6] for an interesting account of
some of the disputes).
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As mentioned above, Cantor’s first proof was in a paper [1] whose main result was
the countability of the algebraic numbers—those real numbers which are roots of poly-
nomials with integer coefficients. Since the real numbers are uncountable and the alge-
braic numbers are only countable there must be infinitely many (in fact, uncountably
many) real numbers which are not algebraic. Such numbers are called transcendental.
The fact that transcendental numbers exist had been established by Joseph Liouville,
only about thirty years earlier and was itself still the subject of controversy.

Cantor’s early proofs of uncountability are nearly as simple as his more famous di-
agonalization proof and deserve to be better known. In this expository note we present
all three of these proofs and explore the relationships between them. Understanding
multiple proofs of an important result almost always leads to a deeper understanding
of the concepts involved.

Cantor’s first proof

Recall that a set X is countably infinite if there is a bijection (or one-to-one corre-
spondence) between the elements of X and the natural numbers N = {1, 2, 3 . . . }.
Equivalently, X is countably infinite if there is a sequence {xk}∞

k=1 of distinct elements
in which every element of X occurs precisely once. An infinite set that is not count-
able is called uncountable. So to prove that a set X is uncountable we must show that
for every sequence {xk}∞

k=1 of distinct elements of X there must be an element of X
which is omitted by that sequence. Different sequences will omit different elements,
of course, but there is no one sequence which contains every element of X .

Cantor’s first proof of the uncountability of R was published in 1874 and is based
on the fact that bounded monotonic sequences of real numbers converge.

THEOREM 1. (CANTOR [1]) If {xk}∞
k=1 is a sequence of distinct real numbers there

is at least one z ∈ R which does not occur in this sequence.

Proof. Let {xk}∞
k=1 = x1, x2, . . . be a sequence of distinct real numbers. Define a

sequence of closed intervals In = [an, bn] as follows. Let a1 be the smaller of x1 and
x2 and b1 be the larger. Define I1 to be [a1, b1]. We define In recursively. Given the non-
trivial interval In−1 = [an−1, bn−1] let y and y′ be the first two elements of the sequence
{xk}∞

k=1 which lie in the open interval (an−1, bn−1). (Clearly such y and y′ must exist
or there are infinitely many choices of elements of the interior of In−1 which are not
in the sequence {xk}∞

k=1 and our proof is done.) Define an to be the smaller of y and y′
and bn to be the larger and let In = [an, bn].

From their construction it is clear that these closed intervals are non-trivial and
nested. That is, for each index n,

an−1 < an < bn < bn−1,

and hence In ⊂ In−1. So the sequence {ak}∞
k=1 is strictly increasing and bounded above

(for example any bn is an upper bound) and the sequence {bk}∞
k=1 is strictly decreasing

and bounded below.
Cantor then appealed to the fact that bounded monotonic sequences always have

limits. He defined:

a∞ = lim
n→∞ an and

b∞ = lim
n→∞ bn

He observed that since an < bn for all n, we have a∞ ≤ b∞ and the interval [a∞, b∞]
contains at least one point.

This content downloaded from 131.230.109.78 on Fri, 11 Jul 2014 15:09:02 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 83, NO. 4, OCTOBER 2010 285

If z ∈ [a∞, b∞] then

an < z < bn for all n ∈ N, (1)

and in particular z 	= an and z 	= bn .
We will prove by contradiction that z cannot occur in the sequence {xk}∞

k=1. To do
this we assume z is in the sequence and show this assumption leads to a contradiction.
If z does occur in this sequence then there are only finitely many points preceding
it in the sequence and hence only finitely many elements of the subsequence {an}∞

n=1
preceding it. Let am be the last element of the subsequence {an}∞

n=1 which precedes z
in the sequence {xk}∞

k=1.
We defined am+1 and bm+1 to be the first two elements of the sequence {xk}∞

k=1 which
lie in the interior of Im . Since z is in the interior of Im , by Equation (1), and is not
equal to either am+1 or bm+1, it must be that am+1 and bm+1 precede z in the sequence
{xk}∞

k=1. This contradicts the definition of am as the last element of the subsequence
{an}∞

n=1 preceding z in this sequence. This contradiction implies that the assumption
that z is in the sequence {xk}∞

k=1 is false and hence proves the result.

Cantor also remarked that, in fact, the sequence {xk}∞
k=1 omits at least one point in

any non-empty open interval (a, b), because we could choose a1 and b1 to be the first
two points of the sequence which lie in this interval. According to historian Joseph
Dauben, this published proof benefited from some simplifications due to the German
mathematician Richard Dedekind who had seen a more complicated early draft [4, pp.
50–52].

Indeed, the heart of this proof is the fact that bounded monotonic sequences have
limits. Mathematicians in 1874 would have accepted this as a fact, but it is worth
remembering that the rigorous foundations for results such as this were still being
established. It was only two years earlier, in 1872, that Dedekind had published his
monograph, Stetigkeit und irrationale Zahlen, or Continuity and irrational numbers
[5]. It was in this monograph that he introduced what we now call “Dedekind cuts” as
a foundation for the construction of the real numbers. This construction provided the
basis for what in modern terminology is called the completeness of the real numbers
and in particular the existence of limits for bounded monotonic sequences.

Perfect sets

In 1884 Cantor published a generalization of Theorem 1 which asserts that any perfect
subset of R

k is uncountable. Recall that a subset X of R
k is said to be perfect if X is

closed and every point x of X is a limit of a sequence of points in X which are distinct
from x .

THEOREM 2. (CANTOR [2]) Suppose X is a perfect subset of R
k . Then X is un-

countable.

Proof. We will again show that if {xn}∞
n=1 is a sequence in X , then there is a z ∈ X

which is not a term in this sequence.
Since X is perfect, for every x in X , a ball of any positive radius centered at x

contains infinitely many points of X . From this it is easy to see that if B is a closed
ball in R

k centered at a point of X , and y is any point of X , then there is another closed
ball B ′ which is contained in B, is centered at a point of X , and does not contain the
point y.

This property is used to construct recursively a sequence {zn}∞
n=1 which has a limit

z which is not an element of our original sequence. At the same time we construct a
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nested sequence of closed balls {Bn}∞
n=1 with each Bn centered at zn . Let B0 be any

closed ball of positive diameter D centered at a point z0 of X . Given Bn−1 choose a
closed ball Bn such that

• The ball Bn is a subset of Bn−1;
• The center of the ball Bn , which we denote zn , is a point of X ;
• The ball Bn does not contain the point xn; and
• The diameter of Bn is at most half the diameter of Bn−1.

Notice that, for 1 ≤ m ≤ n, the point xm is not in Bn .
From the fact that each successive diameter is at most half of the previous one, it

is easy to see by induction that the diameter of Bn ≤ D/2n . Cantor observed that the
sequence {zn}∞

n=1 is what we now call a Cauchy sequence. This is because if n, m > N ,
then zn and zm are in BN so

‖zn − zm‖ <
D

2N
.

Since the sequence {zn}∞
n=1 is a Cauchy sequence it has a limit in R

k which we will
denote z. Since X is a closed set and zn ∈ X , the limit point z is also in X .

For any n > 0, all of the points zm with m ≥ n are in the closed ball Bn so their
limit z must also be in Bn . But recall that by construction the point xn is not in Bn .
Hence for every n it must be that z 	= xn .

Using what we now know about compactness the proof above can be significantly
simplified. Having constructed a nested family of balls Bn each of which contains
some point of X and with xn /∈ Bn , we don’t need to worry about centers or diameters
or Cauchy sequences. Instead we let Zn = X ∩ Bn . Then Zn is closed and bounded
and hence compact. It is also non-empty since each Bn contains at least one point
of X . And, of course, Zn ⊂ Zn−1. These properties imply that the nested intersection⋂∞

n=1 Zn is non-empty. If z is a point of this intersection then for each n ∈ N, z ∈ Bn

and hence z 	= xn . So the point z is not in the sequence {xn}∞
n=1.

Of course this line of proof was not available to Cantor. He could not have known
that a nested intersection of non-empty compact sets is non-empty—indeed the con-
cept of compactness was unknown at the time he wrote this paper. It was not until 1894
that Émile Borel proved that an open cover of a closed interval has a finite subcover.
See [7] for a history of the concept of compactness. What we consider the standard
properties of compactness were not developed until the 20th century.

Cantor published this result in §16 of [2]. It is interesting that it appeared a decade
after his first proof (Theorem 1) and still well prior to the so-called diagonalization
proof which we discuss in the next section. It certainly bears a resemblance to his first
proof but, as we will see, it also strongly foreshadows the more famous diagonalization
argument.

The diagonalization proof

More than a decade and a half after his first proof Cantor published the much more
famous proof of the uncountability of R which has become associated with his name.
This was the introduction of what is now called the Cantor diagonalization argument.

THEOREM 3. (CANTOR [3]) The unit interval [0, 1] is not countable.

Proof. Let X denote the subset of [0, 1] consisting of those numbers which have
decimal representations containing only the digits 4 and 9. We choose 4 and 9 for
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concreteness; other choices would work as well. We know in general that two different
decimal expansions can represent the same real number. For example,

0.4999 · · · = 0.5000 . . . ,

where the first decimal ends in an infinitely repeating sequence of 9’s and the second
in an infinitely repeating sequence of 0’s. But if we allow ourselves only to use the
digits 4 and 9 there is only one way to write this number.

Indeed, the representation for any number in the set X using only the digits 4 and
9 is unique. To see this suppose u and v are elements of X , so they have decimal
representations using only 4 and 9; or more formally, suppose

u =
∞∑

i=1

ui

10i
, and v =

∞∑
i=1

vi

10i
,

where each ui and vi is either 4 or 9. Suppose these decimal representations differ first
in the nth place, so ui = vi for 1 ≤ i < n and un 	= vn . Let w denote the number with
decimal representation equal to the decimal representation of u and v in places 1 to
n − 1 (where they agree) and with 0 in all other places so

w =
n−1∑
i=1

ui

10i
=

n−1∑
i=1

vi

10i

Since u and v disagree in the nth place the larger of them has a 9 in this place and
must be greater than w + 9 × 10−n . Similarly, the smaller of u and v has a 4 in the nth
place and must be at most w + 5 × 10−n . Hence |u − v| > 4 × 10−n > 0 so u 	= v.
This shows that two different decimal representations, which use only the digits 4 and
9, must actually represent different numbers.

Now given any sequence {xk}∞
k=1 in X we define an element z by specifying its

decimal expansion using a process called diagonalization. Specifically let

z =
∞∑

k=1

zk

10i
,

where

zk =
{

4, if the kth decimal digit of xk is 9;
9, if the kth decimal digit of xk is 4.

We conclude that z is in X , since its decimal expansion contains only the digits 4 and
9. But it is not an element of the sequence {xk}∞

k=1 since z differs from xk in the kth
decimal place. It follows that it is not possible to enumerate the elements of the set X .
In other words, there is no sequence {xk}∞

k=1 of elements of X which contains all the
elements of X . This proves X is uncountable.

There is a subtle point here. We have not found one z which is omitted from every
sequence {xk}∞

k=1. Instead we have shown that for each sequence {xk}∞
k=1 there is an

omitted z—different sequences will omit different elements of X .
Since [0, 1] contains the uncountable set X , it must also be uncountable. (We are

using the fact that a subset of a countable set is also countable.)

There are two parts to this proof. In the first part we showed that there is a subset X
whose elements can be uniquely specified by a decimal expansion containing only the
digits 4 and 9, i.e., an infinite sequence of 4’s and 9’s. In fact, Cantor did not include
this part of the proof in his original paper. It is not difficult to show and he probably
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considered it obvious. He also did not use 4 and 9 but instead used the letters m and w

to represent arbitrary distinct digits. Essentially the same argument given above will
show that two decimal representations of a single number must be identical if they
both use only the same two digits.

The second part of the proof uses what has come to be called a diagonalization
argument to show that the collection of all such infinite sequences is not countable.
The term diagonalization is used because one way to view the construction of z given
in the proof is to use the sequence {xn} in X to make an infinite matrix M . The first
row of the matrix M consists of the decimal digits of x1, the second row the decimal
digits of x2, and the nth row the decimal digits of xn . So Mi j is the j th decimal digit
of xi . Then the element z which does not occur in the sequence is obtained from the
diagonal of M . More precisely zn , the nth decimal digit of z, is 4 if Mnn = 9 and 9
if Mnn = 4. Then z does not correspond to any row of the matrix M because the nth
decimal digit of z is different from the diagonal entry Mnn . So z does not correspond
to any row of the matrix M and hence z is not in the sequence {xn}.

As mentioned above the proof for perfect subsets of R
k (Theorem 2 above) strongly

foreshadows the diagonalization argument. To see this, let X be the subset of [0, 1]
consisting of those numbers with decimal representations containing only the digits 4
and 9. It is an easy exercise to show that X is perfect, though we will not need this fact.
Let X0 = X and let Xn be the subset of Xn−1 consisting of all of those points whose
nth decimal digit (4 or 9) is different from the nth decimal digit of xn . Then {Xn}∞

n=0 is
a nested family of compact sets and

⋂∞
n=1 Xn consists of the single point produced by

the diagonalization in the proof of Theorem 3.
There is a slightly different and very clever way to make the diagonalization part of

Cantor’s argument. Recall that P(N), the power set of the natural numbers N, is the set
of all subsets of N. We first observe that there is a bijection from X , the set of infinite
sequences of 4’s and 9’s, to P(N). This bijective correspondence is given by

A ←→ {xn}∞
n=1

where A is a subset of N and xi = 9 if i ∈ A and xi = 4 otherwise. Thus, it suffices to
show that the set P(N) is uncountable. This can be done as a special case of a more
general argument.

PROPOSITION 4. Suppose S is a non-empty set and f : S → P(S) is a function
from S to its power set. Then f is not surjective.

Proof. For each x ∈ S either x ∈ f (x) or x /∈ f (x). Let Y = {y ∈ S | y /∈ f (y)}.
Let x be any element of S. From the definition of Y we observe that x is in Y if and
only if x is not in the set f (x). Hence the sets Y and f (x) can never be equal since one
of them contains x and the other does not. Therefore, there is no x with f (x) = Y , so
f is not surjective.

This proposition implies that any set S has a cardinality which is less than that of its
power set P(S) and, in particular, P(N) is uncountable. The proof of Proposition 4 is
really just a disguised version of the diagonalization argument and consequently this
proposition is also sometimes referred to as Cantor’s diagonalization theorem.
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3. Georg Cantor, Über eine elementare Frage de Mannigfaltigketslehre, Jahresber. Deutsch. Math.-Verein. 1
(1890–1891) 75–78.

4. Joseph Dauben, Georg Cantor: His Mathematics and Philosophy of the Infinite, Princeton University Press,
Princeton, NJ, 1990.

5. Richard Dedekind, Essays on the Theory of Numbers. I: Continuity and Irrational Numbers; II: The Nature
and Meaning of Numbers, authorized translation by Wooster Woodruff Beman, Dover, New York, 1963.

6. Hal Hellman, Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever, John Wiley, Hoboken, NJ, 2006.
7. Manya Janaky Raman, Understanding Compactness: A Historical Perspective, M.A. thesis, University of

California Berkeley, 1997.
8. Jacqueline Stedall, Mathematics Emerging: A Sourcebook 1540–1900, Oxford University Press, New York,

2008.

Summary This expository note describes some of the history behind Georg Cantor’s proof that the real numbers
are uncountable. In fact, Cantor gave three different proofs of this important but initially controversial result. The
first was published in 1874 and the famous diagonalization argument was not published until nearly two decades
later. We explore the different ideas used in each of his three proofs.
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Recently, a high school teacher came across the following problem which he passed
on to a forum for mathematics teachers:

Evaluate cos

(
2π

13

)
+ cos

(
6π

13

)
+ cos

(
8π

13

)
.

One could solve this in a number of elementary ways, and as we will show below, the
value turns out to be −1+√

13
4 . The point here is to find what is special about 13 and

about 2, 6, 8.
Without further ado, let us break the illusion that 13 might be particularly “lucky”

to admit such a simple expression: We show a corresponding result for every prime
number congruent to 1 modulo 4 and, indeed, for every prime.

Here we will explain briefly how to prove for any prime number p ≡ 1 modulo 4
the identity ∑

a∈Q

cos

(
2aπ

p

)
= −1 + √

p

2
, (1)

where the sum is over the set Q of quadratic residues mod p; that is, a ∈ Q if 1 ≤
a ≤ p − 1 and for some integer b, a ≡ b2 mod p. When p ≡ 1 mod 4, then −1 is a
square mod p; indeed, for those who know it, we mention that Wilson’s congruence
(p − 1)! ≡ −1 mod p simplifies to ((

p−1
2 )!)2 ≡ −1 mod p in the case p ≡ 1 mod 4.

Thus the squares mod p (as well as the nonsquares mod p) come in pairs a, −a with
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