Properties of the Real Number System

• Algebraic Properties.

 $\mathbb R$ is an ordered field, with $\mathbb Q$ an ordered subfield, and $\mathbb Z$ an ordered communative subring with a unit.

- Cardnality.
 - \mathbb{R} is uncountably infinite, while \mathbb{Q} and \mathbb{Z} are countably infinite.
- Dense Subsets.

Between any pair of distinct real numbers there is a rational number and an irrational number.

• Archimedean Properties.

For every $x \in \mathbb{R}$ there exists an $n \in \mathbb{N}$ such that n > x.

For every $x \in (0, \infty)$ there exists an $n \in \mathbb{N}$ such that $\frac{1}{n} < x$.

• ϵ -Principle.

If $\forall \epsilon > 0$ we have $a \leq b + \epsilon$, then $a \leq b$.

If $\forall \epsilon > 0$ we have $|x - y| \le \epsilon$, then x = y.

• Completeness Properties.

If $S \subset \mathbb{R}$ has an upper bound, then S has a least upper bound; it is called the *supremum* of S and is denoted sup S. If $S \neq \emptyset$ and has no upper bound then we define sup $S = \infty$. We define sup $\emptyset = -\infty$.

If $S \subset \mathbb{R}$ has a lower bound, then S has a greatest lower bound; it is called the *infimum* of S and is denoted inf S. If $S \neq \emptyset$ and has no lower bound then we define $S = -\infty$. We define $\inf \emptyset = \infty$.

• Subsets.

If $\emptyset \neq S \subset T$, then

 $-\infty \leq \inf T \leq \inf S \leq \sup S \leq \sup T \leq \infty.$

• Cauchy Completeness.

An infinite sequence of real numbers (a_n) converges iff

 $\forall \epsilon > 0 \; \exists N \in \mathbb{N} \text{ such that } n, m \ge N \implies |a_n - a_m| < \epsilon.$

• Existance of Roots.

For every $x \in [0, \infty)$ and $n \in \mathbb{N}$, there exists a unique $y \in [0, \infty)$ such that $y^n = x$.

• Triangle Inequality.

In \mathbb{R}^n we have $|x-z| \leq |x-y| + |y-z|$.