Algebraic Systems

A set G together with a binary operation $+: G \times G \to G$ is called a **group** provided the following hold.

- (1) (a+b)+c=a+(b+c) for all a,b,&c in G.
- (2) There exists $0 \in G$ such that a + 0 = 0 + a = a for all $a \in G$.
- (3) For all $a \in G$ there exists a $-a \in G$ such that a + -a = 0.

If in addition a+b=b+a for a and b in G then G is a **commutative** or **abelian** group.

Examples. $(\mathbb{R}, +)$, $(\mathbb{Z}, +)$, $(\mathbb{Z}/n, +)$, $(\mathbb{R} - \{0\}, \cdot)$, $(2 \times 2 \text{ matrices}, +)$, but not $(2 \times 2 \text{ matrices}, \cdot)$, yet $(2 \times 2 \text{ matrices} \text{ with } \det \neq 0, \cdot)$ is a group.

A set R together with two binary operations + and \cdot from $R \times R$ to R is called a **ring** provided the following hold.

- (1) (R, +) is an abelian group.
- (2) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all a, b, &c in R.
- (3) $a \cdot (b+c) = a \cdot b + a \cdot c$ for all a, b, &c in R.
- (4) $(a+b) \cdot c = a \cdot c + b \cdot c$ for all a, b, &c in R.

If there exists an element $1 \in R$ such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in R$ then R is a **ring with a unit**.

If $a \cdot b = b \cdot a$ for all a and b in R then R is a **commutative ring**.

Examples. $(\mathbb{R}, +, \cdot)$, $(\mathbb{C}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{Z}, +, \cdot)$. $(2 \times 2 \text{ matrices}, +, \cdot)$, { polynomials }, $(\mathbb{Z}/n, +, \cdot)$.

A set F together with two binary operations + and \cdot from $F \times F$ to F is called a **field** provided the following hold.

- (1) $(F, +, \cdot)$ is a commutative ring with a unit.
- (2) $(F \{0\}, \cdot)$ is an abelian group.

Examples. $(\mathbb{R}, +, \cdot)$, $(\mathbb{C}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, but not $(\mathbb{Z}, +, \cdot)$. $(\mathbb{Z}/n, +, \cdot)$ is a field iff n is prime.

A field F is **ordered** provided there exists a order relation < such that that following properties hold for all $x, y, z \in F$.

- (1) $x < y \& y < z \implies x < z$.
- (2) One and only one of the following are true: x < y, x = y, y < x.
- $(3) x < y \implies x + z < y + z.$
- (4) If x > 0 and y > 0, then xy > 0.

Examples. \mathbb{R} and \mathbb{Q} are ordered fields. \mathbb{C} cannot be given an order. Niether can finite fields.

Let (V, \oplus) be an abelian group and let $(F, +, \cdot)$ be a field. Then V is a **vector space** over F if there is a binary operation $\odot: F \times V \to V$, called **scalar multiplication** where the following hold.

- (1) $1 \odot v = v$ for all $v \in V$.
- (2) $(r \cdot s) \odot v = r \odot (s \odot v)$ for all r and s in F and v in V.
- (3) $r \odot (v \oplus w) = (r \odot v) \oplus (r \odot w)$ for all $r \in F$, v and w in V.
- $(4) (r+s) \odot v = (r \odot v) \oplus (s \odot v)$

The elements of V are called **vectors**. The elements of F are called **scalars**.