## A Very Brief Intro to Ergodic Theory

**Definition.** Let X be a set, let  $\mathcal{M}$  be a  $\sigma$ -algebra of subsets of X and let  $m : \mathcal{M} \to [0, \infty]$  be a measure. If m(X) = 1 we call  $(X, \mathcal{M}, m)$  a **probability space**.

**Definition.** Let  $T: X \to X$ . If  $m\left(T^{-1}(B)\right) = m(B)$  for all  $B \in \mathcal{M}$ , we say that T is **measure preserving**.

**Example.** Maps which rotate a circle are measure preserving. For  $X = \mathbb{R}$  the function T(x) = |2x| is measure preserving.



**Definition.** Let  $(X, \mathcal{M}, m)$  be a probability space. A measure preserving function  $T: X \to X$  is **ergodic** if the only sets  $B \in \mathcal{M}$  with  $T^{-1}(B) = B$  have m(B) = 0 or 1.

**Example.** Rotations of  $S^1$  are ergodic iff they are irrational wrt  $2\pi$ . The figure below, if rotated by  $-2\pi/3$  would take the red set to itself, so a rotation by  $2\pi/3$  is not ergodic. An irrational rotation of  $S^1$ , when iterated infinitely many times, can be shown to take any small open set and smear it all around  $S^1$ . Note: Often X is a compact topological group.



**Theorem.** The following are equivalent.

- (a) T is ergodic.
- (b)  $\forall B \in \mathcal{M}$  with m(B) > 0 we have

$$m\left(\bigcup_{n=1}^{\infty} T^{-n}(B)\right) = 1.$$

(c)  $\forall A, B \in \mathcal{M}$  with positive measures,  $\exists n > 0$  such that  $m\left(T^{-n}(A) \cap B\right) > 0$ .

**Definition.** Let  $L^p(X, \mathcal{M}, m) = \text{all measurable functions } f: X \to \mathbb{R}$  (or  $\mathbb{C}$ ) such that

$$\int_X |f|^p < \infty.$$

Then  $T: X \to X$  induces a map  $U_T: L^p \to L^p$  via

$$U_T(f)(x) = f(T(x)).$$

**Theorem.** Let  $f \in L^1$  and  $f_n = \frac{1}{n} \sum_{i=0}^{n-1} f(T^i(x))$ . Then

$$f_n \xrightarrow{\text{a.e.}} f^* \in L^1, \quad f^* \circ T = f^*, \quad \& \quad \int_X f^* = \int_X f.$$

Furthermore, if T is ergodic, then  $f^*$  is a constant. Hence,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i(x)) = \int_X f, \text{ for a.e. } x \in X.$$

**Borel's Normal Number Theorem.** For almost all numbers in [0,1) the frequency of 1's in the binary expansion is  $\frac{1}{2}$ .

Outline of proof. Let  $T:[0,1)\to [0,1)$  be given by  $T=2x \mod 1$ . It is known that T is ergodic.

Let Y denote the set of points in [0,1) that have a unique binary expansion. Since [0,1) - Y is countable we have m(Y) = 1.

Let  $x \in Y$  and write

$$x = \frac{a_1}{2} + \frac{a_2}{4} + \frac{a_3}{8} + \frac{a_4}{16} + \frac{a_5}{32} + \cdots$$

Then

$$T(x) = \frac{a_2}{2} + \frac{a_3}{4} + \frac{a_4}{8} + \frac{a_5}{16} + \frac{a_6}{32} + \cdots$$

Let  $f(x) = \chi_{[\frac{1}{2},1)}(x)$ . Then

$$f(T^{i}(x)) = f\left(\frac{a_{i+1}}{2} + \frac{a_{i+2}}{4} + \frac{a_{i+3}}{8} + \frac{a_{i+4}}{16} + \frac{a_{i+5}}{32} + \cdots\right) = a_{i+1}.$$

For  $x \in Y$  the number of 1's in the first n digits is

$$\sum_{i=0}^{n-1} f\left(T^i(x)\right).$$

But,

$$\frac{1}{n} \sum_{i=0}^{n-1} f(T^i(x)) \xrightarrow{\text{a.e.}} \int_{[0,1)} \chi_{[\frac{1}{2},1)} = \frac{1}{2}.$$

## REFERENCES OR FURTHER READING

An Introduction to Ergodic Theory, by Peter Walters, Springer-Verlag, 1982.

https://link.springer.com/book/9780387951522

Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces, by Daniel Rudolph, Clarendon Press, 1990.

https://www.amazon.com/s?k=9780198535720

Normal Numbers are Normal, By Davar Khoshnevisan, Clay Mathematics Institute Annual Report 2006.

https://www.claymath.org/library/annual\_report/ar2006/06report\_normalnumbers.pdf

©Michael C. Sullivan, 2017, updated 2023. May be used freely for nonprofit educational purposes. Other uses require premission.