
Lebesgue Integration: A non-rigorous introduction

What is wrong with Riemann integration?

Example. Let f(x) =

{
0 for x ∈ Q
1 for x /∈ Q.

The upper integral is 1, while the lower integral is 0. Yet, the function
equals 1 almost everywhere. Shouldn’t the integral be 1 rather than be
undefined? Remember Riemann integrable functions that differ only on
a set of measure zero have equal integrals. Why should this function
be nonintegrable?

An approach to this problem is called Lebesgue integration. The
set of Lebesgue integrable functions will turn out to be larger than the
Riemann integrable functions. In fact, although we won’t show this
here, they turn out to be the completion of the Riemann integrable
functions in the same sense that R is the completion of Q.

The basic idea is to partition the y-axis instead of the x-axis. This
requires studying the sets in the domain, the x-axis, that can be realized
as inverse images of intervals in the y-axis.
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Size Matters

Definition. Let E ⊂ R be the disjoint union of E1, . . . , En. Let
a1, . . . , an be real numbers. Let

φ =
n∑
i=1

aiχEi
.

Functions that can be defined this way are called simple functions.
(There is an additional criteria that I will mention later.)

We want to define ∫
E

φ =
n∑
i=1

ai size (Ei).

But what do we mean by “size”?

Example. If we take size
(
[0, 1] ∩ Q

)
= 0 and size

(
[0, 1] ∩ (R −

Q)
)

= 1, then ∫
[0,1]

χR−Q = 1.

It will turn out that limits of simple functions behave well under this
integral and we can define Lebesgue integration as a limit. But, first
we have to get real about what “size” should mean.

Ideally, we want a mapping m from subsets of R to [0,∞] such that
the following hold.

o. m(E) is defined for all E ⊂ R.
i. m([a, b]) = m((a, b]) = m([a, b)) = m((a, b)) = b− a.
ii. If {Ei}∞i=1 is disjoint then m(∪Ei) =

∑
m(Ei).

iii. If E ⊂ R, a ∈ R and Ea = {x+ a |x ∈ R}, then m(E) = m(Ea).
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But, it is known that there is no such function! It is turns out that
(o) is usually dropped, that is, we will have to accept the existence of
nonmeasurable sets1. Criteria (ii) is called countable additivity.
Criteria (iii) is translation invariance and is sometimes dropped.

The collection of subsets of R that we will be able to measure will be
referred to a the measurable subsets and denoted M. We still want
M to be a large as possible and to include all reasonable subsets. This
leads to the idea of a σ-algebra.

Definition. A collection of subsetsA of a set X is called a σ-algebra
if the following hold.

a. X ∈ A.
b. S ∈ A =⇒ X − S ∈ A.
c. Sn ∈ A =⇒ ∪Sn ∈ A.

It follows that ∅ ∈ A and that A is closed under countable intersec-
tions.

Fact. If F is any collection of subsets of X, there exists a smallest
σ-algebra that contains F .

Definition. Let (X, T ) be a topological space. The smallest σ-
algebra containing T is called the Borel σ-algebra of (X, T ) and is
usually denoted B.

Note. A set is a Gδ set if it is a countable intersection of open sets.
A set is an Fσ set if it is a countable union of closes sets. All Gδ and
Fσ sets are contained in the Borel sets.

We want our measurable sets to contain the Borel sets.

1See Royden, Chapter 3, Section 4. The construction uses the Axiom of Choice.
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The Outer Measure

To define our measure on R we first define the outer measure.

Definition. Let A ⊂ R. Let C be the collection of all countable
collections of open intervals that cover A. That is {In} ∈ C means
A ⊂ ∪In. The outer measure of A is

m∗(A) = inf C
∑

l(In),

where l(In) is the Euclidean length of In, and infinity is allowed.

Fact. (o), (i), & (iii) hold.

It can also be shown that m∗ is countably subadditive, meaning
if {En} is a countable collection of disjoint sets, then

m∗(∪En) ≤
∑

m∗(En).

However, there are examples where equality fails. Thus (ii) does not
hold.

To get around this we throw out some “bad” subsets of R and dismiss
them as “nonmeasurable”.
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Lebesgue Measure

Definition. Let E ⊂ R. Then we say E is measurable if for every
X ⊂ R we have

m∗(X) = m∗(E ∩X) +m∗(Ec ∩X).

The collection of measurable subsets of R will be denoted by M. We
define m to be the restriction of m∗ to M. It is called the Lebesgue
measure.

This may seem a bit odd at first, but think of it this way. If E is a
reasonable set, then if we use it to partition other sets into two pieces,
the measure of the pieces should equal the measure of the whole.

Facts. M is a σ-algebra that contains all the Borel sets and m
satisfies (i), (ii) & (iii), but (o) fails.

m(∅) = 0.

If m∗(A) = 0 then A ∈M.

If A ⊂ B then m∗(A) ≤ m∗(B) and if both are measurable m(A) ≤
m(B).

Theorem. For E ⊂ R the following are equivalent.

a. E ∈M.
b. ∀ ε > 0, ∃ an open set O, such that E ⊂ O and m∗(O − E) < ε.
c. ∀ ε > 0, ∃ an closed set C, such that C ⊂ E and m∗(E −C) < ε.
d. ∃ a Gδ set G, such that E ⊂ G and m∗(G− E) = 0.
e. ∃ a Fσ set F , such that F ⊂ E and m∗(E − F ) = 0.
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Measurable Functions

Definition. Let X be any set with V a σ-algebra for some measure
µ (meaning µ : V → [0,∞] and i, ii & iii hold). Let Y be a topological
space and f : X → Y . Then f is a measurable function provided
for any open set U ⊂ Y we have f−1(U) ∈ V . In words, f inverse maps
the topology of Y into the measurable sets of X.

Theorem. Let D ⊂ R be measurable. Let f : D → R. If f is
measurable, then all the classes of sets below are measurable, and if
any one of these is measurable, then f is measurable.

f−1((a,∞)), f−1([a,∞)), f−1((−∞, a)), f−1((−∞, a]),

f−1((a, b)), f−1([a, b)), f−1((a, b]), f−1([a, b])

Theorem. Let D ⊂ R. If f : D → R and g : D → R are measurable
then f+g and f ·g are measurable. Constant functions are measurable.

Theorem. Let D ⊂ R. If f : D → R is measurable and f = g, a.e.,
then g is measurable.

Theorem. If E ∈M, then χE is a measurable function.
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From Simple Functions to the Lebesgue
Integral

We redefine simple functions. Let φ =
n∑
i=1

aiχEi
, where E1, . . . , En

are disjoint, but now we require ai ≥ 0 and, more importantly, each
Ei ∈M. Then these are called the simple functions.

Let E ∈M. Define ∫
E

φ =
n∑
i=1

aim(E ∩ Ei).

Let f : E → R be bounded, nonnegative, E ∈ M and m(E) < ∞.
Consider the two numbers,

inff≤φ

∫
E

φ & supf≥φ

∫
E

φ,

where the infimum and supremum are taken over all simple functions
that are greater than or equal to f or less than or equal to f , respec-
tively. These are analogous to the upper and lower integrals we used
in defining the Darboux integral. (But, ±∞ are allowed.)

When these two numbers are equal they are called the Lebesgue
integral of f . This holds if and only if f is a measurable function.

We can generalize to functions that aren’t nonnegative as follows. Let
f : E → R be bounded, m(E) <∞. Let

f+(x) = max{f(x), 0} & f−(x) = max{−f(x), 0}.
It can be shown these are measurable and obviously f = f+ − f−.
Define

∫
E f =

∫
E f

+ −
∫
E f
−.

All Riemann integrable functions are Lebesgue integrable and the
integrals are equal. We use the same symbol for both when no confusion
will arise.
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Unbounded Joy

Let f : E → [0,∞), where E ∈ M. Let H be the set of nonnegative
bounded measurable functions from E to R that are less than or equal
to f , and such that m

(
{x |h(x) 6= 0}

)
< ∞. Thus for h ∈ H the

integral
∫
E h is defined. Then we define the Lebesgue integral of f over

E by ∫
E

f = sup

{∫
E

h |h ∈ H
}
.

This can be extended to not necessarily nonnegative functions as
before.

We say f : E → R is Lebesgue integrable if f is measurable and∫
E |f | <∞. Let L1(E) be the set of Lebesgue integrable functions over
E. It is a vector space under addition of functions and multiplication
by real constants. The Lebesgue integral is linear as a map from L1(E)
to R.

We also have the following. Assume A,B,E are measurable and f
and g are L1 functions.

• If A ∩B = ∅, then
∫
A∪B f =

∫
A f +

∫
B f .

• If f = g a.e., then
∫
E f =

∫
E g.

• If f ≤ g a.e., then
∫
E f ≤

∫
E g.

• If f is nonnegative and
∫
E f = 0, then f = 0 a.e.

• If f is nonnegative and A ⊂ B, then
∫
A f ≤

∫
B f .
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Limit Theorems

Assume E is a measurable set and all functions below are from E to
R.

Fatou’s Lemma. Let (fn) be a sequence of nonnegative measurable
functions and suppose fn(x)→ f(x) for a.e. x ∈ E. Then∫

E

f ≤ lim inf
n→∞

∫
E

fn.

The Monotone Convergence Theorem. Let (fn) be an increasing
sequence of nonnegative measurable functions and suppose fn(x) →
f(x) for a.e. x ∈ E. Then∫

E

f = lim
n→∞

∫
E

fn.

Corollary. Let (fn) be a sequence of nonnegative measurable func-
tions and suppose fn(x) → f(x) for a.e. x ∈ E. If fn ≤ f on E for
each n then ∫

E

f = lim
n→∞

∫
E

fn.

The Dominated Convergence Theorem. Let g be integrable over
E. (It need not be bounded.) Let (fn) be an sequence of measurable
functions and suppose fn(x) → f(x) for a.e. x ∈ E. If |fn(x)| ≤ g(x)
for a.e. x ∈ E, then ∫

E

f = lim
n→∞

∫
E

fn.

Example. Let (qi) be an enumeration of [0, 1]∩Q. Let fi = χqi and

gk =
∑k

i=1 fi. Then on [0,1], gk → χQ. For Lebesgue integration we
have ∫

[0,1]

gk = 0→ 0 =

∫
[0,1]

χQ.

This fails for Riemann integration since
∫
[0,1] χQ does not exist.
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The Fundamental Theorem of Calculus

The FTC takes the following form.

Definition. Let g : [a, b] → R. Then we say g is absolutely con-
tinuous if ∀ ε > 0, ∃ δ > 0 such that whenever (α1, β1), . . . , (αn, βn) are
disjoint intervals in [a, b] we have∑

βi − αi < δ =⇒
∑
|g(βi)− g(αi)| < ε.

Fact.

Absolute continuity =⇒ uniform continuity =⇒ continuity

but the reverse implications are false. The Devil’s staircase function is
uniformly continuous on [0,1] but can be shown to not be absolutely
continuous.

FTC. Let f : [a, b]→ R be Lebesgue integrable. Then

a. F (x) =
∫
[a,x] f is absolutely continuous.

b. F ′(x) = f(x) for a.e. x ∈ [a, b].
c. If G : [a, b] → R is absolutely continuous and G′(x) = f(x) for

a.e. x ∈ [a, b], then F = G+ C, a constant, a.e.

Fact. F (x) is of the form
∫
[a,x] f iff F (x) is absolutely continuous.
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The Lp spaces

Let p > 0 and E ⊂ R be measurable. (Usually, E is a compact
interval.) Define

Lp(E) =

{
f ∈M

∣∣∣ ∫
E

|f |p <∞
}
.

It is easy to show that Lp is a vector space. It is given the norm

||f ||p = p

√∫
E

|f |p.

We define L∞(E) = all a.e. bounded, measurable functions on E and
norm

||f ||∞ = inf {M ∈ R |m{x ∈ E | f(x) > M} = 0} .
It is a normed vector space.

The Minkowski Inequalities.

For 0 < p < 1 we have ||f + g||p ≥ ||f ||p + ||g||p.
For 1 ≤ p ≤ ∞ we have ||f + g||p ≤ ||f ||p + ||g||p.

Holder’s Inequality. Let p, q ∈ [1,∞] with 1/p + 1/q = 1. Let
f ∈ Lp and g ∈ Lq. Then f · g ∈ L1 and∫

E

|f · g| ≤ ||f ||p||g||q.

Note. In the Lp spaces we usually declare f ∼ g whenever f = g
a.e. Thus, we are really working with equivalence classes of functions.
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Linear Functionals

Definition. Let (X, || · ||) be a normed vector space. A map F :
X → R is called a linear functional if it is linear. A linear functional
is bounded if for some µ ≥ 0 we have

|F (f)| ≤ µ||f ||,∀f ∈ X.
Define

||F || = sup
f∈X,||f ||6=0

|F (f)|
||f ||

.

For every g ∈ Lq(E) define G : Lp(E)→ R by G(f) =
∫
E f · g. Then

||G|| = ||g||q.

Riesz Representation Theorem. Let p, q ∈ (1,∞) with 1/p +
1/q = 1. Let G : Lp(E) → R be a bounded linear functional. Then ∃!
g ∈ Lq(E) such that

G(f) =

∫
E

f · g & ||G|| = ||g||q.
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Convergence in Mean and Completeness

Definition. Let (X, || · ||) be a normed vector space. Let f ∈ X. If
(fn) is a sequence in X and ||f − fn|| → 0 then we say (fn) converges
in the norm to f . This is different from point-wise convergence. If
all Cauchy sequences converge in the norm we say X is complete. A
complete, normed vector space is call a Banach space.

The Facts. The Lp spaces for p ≥ 1 are complete. Here convergence
in norm is often called convergence in the mean of order p. The
space L1 is the completion of the subset of Riemann integrable func-
tions. The Lebesgue integral is the unique extension of the Riemann
integral – in a certain sense.

Books. These notes are based primarly on the 3rd edition of Roy-
den’s textbook Real Analysis. Unfortunately, the 4th edition, with a
new coauther as Royden died in 1993, has many errors. Other stan-
dard textbooks are Rudin’s Real and Complex Analysis, Hewiit and
Stomberg’s Real and Abstract Analysis, and Stein and Shakrchi’s Real
Analysis. But, the best textbook I have seen is a new (2020) book by
Axler, Measure, Integration & Real Analysis. The PDF version is free
here: https://measure.axler.net/.
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