
Proof that e is irrational
Reference: Principles of Mathematical Analysis by Rudin, pages 48-

50.

Theorem: e is irrational.

Proof: Suppose e is rational and that e = p/q, where p > 0 and
q > 0. In fact we can assume q > 1 since e is not an integer. (You
should prove this!) We will derive a contradiction, namely that there
is an integer between 0 and 1!
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Thus, if we let n = q, we have 0 < e− eq <
1

q!q
.

Thus, 0 < q!(e− eq) <
1

q
< 1.

Now q!e =
q!p

q
= (q − 1)!p ∈ Z.
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Therefore, there exists an integer strictly between 0 and 1. Since
this is absurd, we conclude that e cannot be expressed as a ratio of
integers.
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