Proof that e is irrational

Reference: Principles of Mathematical Analysis by Rudin, pages 48-
50.

Theorem: e is irrational.

Proof: Suppose e is rational and that e = p/q, where p > 0 and
g > 0. In fact we can assume ¢ > 1 since e is not an integer. (You
should prove this!) We will derive a contradiction, namely that there
is an integer between 0 and 1!
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Thus, if we let n = ¢, we have 0 <e — e, < —.
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Therefore, there exists an integer strictly between 0 and 1. Since
this is absurd, we conclude that e cannot be expressed as a ratio of
integers.



