
Open Subsets of R

Definition. (−∞, a), (a,∞), (−∞,∞), (a, b) are the open intervals
of R. (Note that these are the connected open subsets of R.)

Theorem. Every open subset U of R can be uniquely expressed as
a countable union of disjoint open intervals. The end points of the
intervals do not belong to U .

Proof. Let U ⊂ R be open. For each x ∈ U we will find the
“maximal” open interval Ix s.t. x ∈ Ix ⊂ U . Here “maximal” means
that for any open interval J s.t x ∈ J ⊂ U , we have J ⊂ Ix.

Let x ∈ U . Define Ix = (ax, bx), where ax = inf {a ∈ R | (a, x) ⊂ U},
and bx = sup {b ∈ R | (x, b) ⊂ U}. Either could be infinite. They are
well defined since ∃ an open interval I s.t x ∈ I ⊂ U , because U is
open.

Clearly, x ∈ Ix ⊂ U . Suppose J = (p, q) is s.t. x ∈ J ⊂ U . Then
(p, x) ⊂ U so p ≥ ax. Likewise q ≤ bx. Thus, J ⊂ Ix and so Ix is indeed
maximal.

Suppose ax ∈ U . (In particular we are supposing ax is finite.) Then
∃ ε > 0 s.t. (ax − ε, ax + ε) ⊂ U . The (ax − ε, bx) is larger than Ix
contradicting maximality. Thus, ax /∈ U and likewise bx /∈ U .
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Claim. For x, y ∈ U , the intervals Ix and Iy are either disjoint or
identical. Proof. If Ix ∩ Iy 6= ∅, then Ix ∪ Iy is an open interval. Since
x ∈ Ix ∪ Iy ⊂ U , we have, by maximality, Ix ∪ Iy ⊂ Ix. Likewise,
Ix ∪ Iy ⊂ Iy. Thus, by elementary set theory, Ix = Iy. �

We now have that U is a disjoint union of maximal open intervals.
Call this collection I. How do we know there are at most countably
many distinct members of I? Remember that the rational numbers are
a countable dense subset of R.

For each distinct Ix choose a rational point in Ix. Because these
intervals are disjoint this determines a one-to-one map from I into Q.
Hence I is finite or countable. (See Chapter 1, Section 4 on cardinality.)

Now for uniqueness. Suppose J is a collection of disjoint open in-
tervals whose union is U . Let J = (a, b) ∈ J and x ∈ J . We know
there is an Ix ∈ I. Clearly Ix ∩ J 6= ∅. Since Ix is maximal, J ⊂ Ix.
We claim that J = Ix. Suppose not. Either ax < a or b < bx. We
assume the latter as both cases are similar. It follows that b is finite.
Now b /∈ J , but b ∈ Ix ⊂ U . Thus, ∃ J ′ ∈ J s.t. b ∈ J ′. Now, ∃ε > 0
s.t. (b − ε, b + ε) ⊂ J ′. But then ∃0 < δ < ε s.t. b − δ is in J and J ′;
hence they are not disjoint. Thus, J = Ix.

Now we have J ⊂ I. If J 6= I then J cannot have union all of U .
�
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Remark. This result does not hold in all metric spaces. Indeed
to make sense of it we would need a concept analogous to the open
intervals. Even in R2 it is easy to draw open sets that are not the
disjoint union of open balls. But, part of this result can be generalized
to Rn.

Theorem. Let U be a collection of disjoint open subsets of Rn. Then
U is at most countable.

Outline of Proof. Let U ∈ U . Let x ∈ U . Let B be an open ball
s.t. x ∈ B ⊂ U . Show that ∃ y ∈ B with rational coordinates. This
determines a one-to-one map from U into Qn, a countable set. �

Definition. Let M be a metric space. If M contains a countable
dense subset, we say M is a separable space and the Theorem above
holds. See pages 128-129 of the textbook. Later we will define what it
means for a subset of a metric space to be connected. Then a further
generalization is possible.
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