
Lecture Notes for Section 12

Part I. Simplicial maps and induced homomorphisms.
Part II. Contiguous simplicial maps and chain homotopies.
Part III. Extend this to relative homology groups [read on your own].

Part I

Definition. (From Section 2) Let K and L be complexes. Let f be
a function from the vertices of K to the vertices of L. While f need not
be one-to-one or onto we assume that the vertices of each simplex in K

are taken onto the vertices of some simplex of L so that we can extend f

linearly to a continuous function f : |K| → |L|. We abuse notation and
write f : K → L for the simplicial map from K to L determined by the
original vertex map.

Definition. Let f : K → L be a simplicial map. We define the induced

homomorphism on the chain groups

f# : Cp(K) → Cp(L)

as follows. Let σ = [v0, . . . , vp] be a p-simplex of K. Then {f(v0), . . . , f(vp)}
spans a p′-simplex of L where p′ ≤ p. Let

f#(σ) =

{

[f(v0), . . . , f(vp)] if p′ = p

0 if p′ < p.

We can extend f# to a homomorphism since f#(−σ) = −f#(σ) is clear.

Lemma (12.1). f# commutes with ∂.

Proof. See textbook.

Corollary. f# induces a homomorphism on homology groups,

f∗ : Hp(K) → Hp(L).

Proof. Let c ∈ Hp(K). Let z and z′ be representative p-cycles of c, that
is c = z + Bp(K) = z′ + Bp(K) for z, z′ ∈ Z(p(K). We will show that
f#(z) ∼ f#(z

′) This means we can define f∗(c) = f#(z) for any z ∈ c

without ambiguity.

(1) We claim f#(z) ∈ Zp(L). Proof. ∂f#(z) = f#∂(z) = f#(0) = 0.
Likewise f#(z

′) ∈ Zp(L).

(2) We claim f#(z) ∼ f#(z
′). Let b = z − z′. Since z ∼ z′ we know

b ∈ Bp(K). Hence ∃ d ∈ Cp+1(K) with ∂d = b. Now

f#(b) = f#(∂d) = ∂f#(d) ∈ Bp(L).

Thus, f#(z)− f#(z
′) = f#(b) ∈ Bp(L) proving the claim.
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Thus, we can define f∗(c) = f#(z)+Bp(L) for any choice of z ∈ C without
ambiguity. �

Theorem (12.2). Let ∗(f : K → L) = {f∗ : Hp(K) → Hp(L) | ∀ p}.
Then ∗ is a functor.

Outline of Proof. (a) Let id : K → K be the identity simplicial map. Then
one checks that id∗ : Hp(K) → Hp(K) is the identity isomorphism ∀ p.

(b) Let f : K → L and g : L → M be simplicial maps. Then one checks
that (g ◦ f)∗ = g∗ ◦ f∗. �

Fact. This all works for reduced homology groups. See textbook.
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Part II.

Definition. Let f, g : K → L be simplicial maps. We say f and g are
contiguous if ∀σ = [v0, . . . , vp] ∈ K the set

{f(v0, . . . , f(vp), g(v0), . . . , g(vp)}

spans a simplex in L.

Remark. Contiguous is a standard English word that mean next to.

Example. In the figure below define f : K → L by

f(v0) = w0 f(v1) = w1 f(v2) = w2

and g : K → L by

g(v0) = w3 g(v1) = w4 g(v2) = w5.

For each vi the set {f(vi), g(vi)} spans an edge of L. But for σ = [v0, v1]
we have the set

{f(v0), f(v1), g(v0), g(v1)} = {w0, w1, w3, w4}

and these do not span a simplex of L.
Thus, f and g are not contiguous.
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But, consider the following simplicial maps of K into L.

f

f1

f2

g

Now f is contiguous to f1 which is contiguous to f2 which is contiguous
to g.

Definition. Whenever this happens we will say that f and g are even-

tually contiguous.

Remark. Think of this as a discrete/combinatorial analog of homotopy.

Notice that in this example f∗ = g∗. We will show that whenever f and
g are eventually contiguous this happens.

The next definition will seem unnatural at first.
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Definition. Let f, g : K → L be simplicial maps. Suppose ∀ p ∃ a
homomorphism D : Cp(K) → Cp+1(L) s.t.

∂D +D∂ = g# − f#.

Such a D is called a chain homotopy between f and g. When this happens
we say f and g are chain homotopic.

Theorem (12.4). If f and g are chain homotopic then f∗ = g∗.

Proof. Let z ∈ Zp(K). Then

g#(z)− f#(z) = ∂Dz +D∂z = ∂Dz ∈ Bp(L).

Thus, g#(z) ∼ f#(z) ∀ z ∈ Zp(K), so g∗ = f∗. �

Return to Example.

We shall construct D. Really all we need is to have D : Zp(K) → Cp+1(L)
be s.t. ∂D(z) = g#(x) − f#(z). But this is hard to do because we would
need need to chose a basis for Zp(K) and define D on these basis cycles and
then extend to Zp(K). Instead we define D on all of Cp(K) by defining D on
p-simplicies. This is easier, but the “cost” is the D∂ term in the definition.
But, D∂ is always 0 on cycles and so causes on harm.
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For p = 0, let D(vi) = the edge [f#(vi), g#(vi)] ∈ C1(L).

For p = 1, let D([v0, v1]) = −(σ1 + σ2) in C2(L),
D([v1, v2]) = −(σ3 + σ4), and
D([v2, v0]) = −(σ5 + σ6).

Check for p = 0: Let c ∈ C0(K), c =
∑

nivi. Then

∂Dc =
∑

ni∂Dvi =
∑

ni(g#(vi)− f#(vi))

= g#(c)− f#(c) = g#(c)− f#(c)−D∂c,
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since D∂c = 0.

Check for p = 1: Let c = n1[v0, v1]+n2[v1, v2]+n3[v2, v0] ∈ C1(K). Then

∂Dc = −n1∂(σ1 + σ2)− n2∂(σ3 + σ4)− n3∂(σ5 + σ6)

= −n1(e1 + e8 − e7 − e4)− n2(e2 − e8 + e9 − e5)− n3(e3 − e9 + e7 − e6)

= −(n1e1+n2e2+n3e3)+(n1e4+n2e5+n3e6)+(n2−n1)e8+(n3−n2)e9+(n1−n3)e7.

Now,

−f#c = −(n1e1 + n2e2 + n3e3) g#c = n1e4 + n2e5 + n3e6,

and
D∂c = D(n1(v1 − v0) + n2(v2 − v1) + n3(v0 − v2)

= D
(

(n3 − n1)v0 + (n1 − n2)v1 + (n2 − n3)v2)
)

= (n3 − n1)e7 + (n1 − n2)e8 + (n2 − n3)e9.

Thus,
∂Dc+D∂c = g#c− f#c.

In general, the construction of D can be quite ad hoc.

Theorem (12.5). If f, g : K → L are eventually contiguous then ∃ a
chain homotopy between f and g, and hence f∗ = g∗.

Proof. It is enough to prove this for f and g contiguous.
Let σ = [v0, . . . , vp] ∈ K. Let L(σ) = the subcomplex of L whose vertex

set is

{f(v0), . . . , f(vp), g(v0), . . . , g(vp)};

and L(σ) contains all faces formed from these.
We have the following facts.

(1) L(σ) is not empty and it is acyclic.

(2) If s is a face of σ, then L(s) ⊂ L(σ).

(3) ∀ σ ∈ K, the chains f#(σ) and g#(σ) are carried by L(σ).

We must show a chain-homotopy D exists.

Let p = 0. ∃ a 1-chain c in L(v) from f#(v) to g#(v) for each vertex v of
K since f and g are contiguous. Define D(v) = c. Then

∂Dv +D∂v = ∂c+ 0 = g#(v)− f#(v).

Note that D(v) is carried by L(v).
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Now, assume D is defined for all dimensions < p and is such that ∀
simplicies s of dimension < p we have that D(s) is carried by L(s) and

∂Ds+D∂s = g#(s)− f#(s).

Let σ be a p-simplex of K. Let

c = g#(σ)− f#(σ)−D∂c.

Claim 1: c is a cycle. (See textbook.)

Claim 2: c is carried by L(σ). (See textbook.)

Since L(σ) is acyclic we know c is a boundary of some p+1-chain in L(σ).
Let d be just such a p+ 1-chain. Define Dσ = d. Then

∂Dσ = ∂d = c = g#(σ)− f#(σ)−D∂σ.

Thus,
∂Dσ +D∂σ = g#(σ)− f#(σ).

We can extend D to p-chains. �

Part III

All this can be extended to relative homology groups. Read this on your
own in the textbook.


