A Crash “Course” In Finitely Generated Abelian Groups

An abelian group is finitely generated if every member is formed by taking sums
from a finite subset called a generating set. A finitely generated abelian group G
is free if for some generating set, {g1,...,9n}, 20 1kig; = 0 iff all k; = 0. In this case
the generating set is called a basis and n is called the rank of G. Any subgroup of a
finitely generated free abelian group is also a finitely generated free abelian group with
rank less than or equal to the original group. Every nontrivial finitely generated free
abelian group is isomorphic to Z" for some integer n > 1 and these are all distinct.

Note that Z/3Z = {[0],[1],[2]} is not free. (The brackets denote equivalence
classes.) The set {[1]} generates it, but is not a basis. For example, [2] = 2-[1] = 4-[1],
so we do not have uniqueness. You can show this happens for any generating subset.

Let A be an m x n integer matrix. Then A : Z" — Z™ is a homomorphism. The
image, denoted AZ", is a subgroup of Z™. Thus the quotient group Z"/AZ" is well
defined. It can be shown that every finitely generated abelian group is isomorphic to
Z™JAZ" for some (non-unique) integer matrix A.

There is a well known algorithm for deciding whether Z™/AZ" and ZF/BZP are
isomorphic. It involves applying row and column operations to place each matrix into
a canonical form. The allowed operations are as follows.

(1) Switch two rows (or two columns).
(2) Multiply a row (or a column) by —1.
(3) Add a multiple of one row (or column) to another row (or column).

These are sufficient if A and B are square matrices of the same size. Assume this for
NOW.

The motivation for allowing the row operations should be clear. They are the exact
analog of the row operations that are allowed when solving systems of equations over
a field like R. However, we cannot multiple through by integers other than +1 since
this could effect the outcome. For example, Z/27Z is not isomorphic to Z/37Z, but
is equal to Z/(—2)Z. (Notice that the units of the ring Z are just 1, while the
units of R are all nonzero real numbers.) Each column operation corresponds to a
change of generators. When you were solving systems of equations over R the variable
names might have had physical significance like time or pressure. Thus, switching
them would change the solution space. But our generating elements have no special
significance, thus the three column operations are allowed.

It can be shown that, using (1), (2) & (3), any square integer matrix can be placed
into a diagonal form
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such that d;|dy, ds|d3 and so on. This is called the Smith normal form. Your book
gives a standard algorithm for doing this. I'll use A ~» B to indicate that B can be
derived from A by the allowed moves. Once we have a matrix in Smith normal form,
it is easy to understand the structure of the corresponding group.

Examples.
2 =2 —4 2 -2 —4 20 0
1. Let A=[4 0 —8|. Then, A~ [0 4 0|~ |0 4 0
4 20 12 0 24 20 0 0 20
Z3
Therefore, —— = Z /27 & 7./AZ & 7./ 20Z.
AZ3
12 0 100
2. Let B= |3 0 —1]|. Then, as you can check, B ~» |0 1 0| . Therefore,
00 O 0 00
Z?)
— =77 = Z.
575 /ZOL]ZDL/0L =L
1 —6 8 6 2
0 3 000
3. Let C=10 0 4 3 1|. A bit of work shows that the Smith normal form is
0 0 2 31
1 3 46 2
10000
01000
00100
00060
00 00O
5
Therefore, YZ/2PL]LPL]LOL/6LDL/0L = L/6Z L.

czs

You should be able to see that a 1 in the Smith normal form yields a trivial factor,
a 0 yields a Z factor, and an integer d > 1 yields a Z/dZ factor.

Using the Smith normal form it can be shown that any finitely generated abelian
group can be written in the form

G2Z7/dZ7& - ®L/dLZ2T L) 2 & --- & T)dZ,

with d;|d;; 1, and all d; # 1. The integer b = n — k is number of d;’s equal to zero
and is called the Betti number, T' = Z/d\Z & --- ® Z/diZ is called the torsion
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subgroup and the nonzero d;’s are called the torsion coefficients. These numbers,
b,dy,...,ds, completely determine the isomorphism class of G.

The following matrix operation is also useful. If row ¢ and column i are all zeros
except for a 1 on the diagonal then they can be deleted without changing the group.
That is suppose B is obtained from A in this way and A is n x n. Then

I N Zn—l
AZr  B7Zn1

Thus, square integer matrices A and B can give isomorphic groups even if they they
are of different sizes.

For non-square matrices it is easy to convert to an equivalent square matrix. We
give two examples of this.

Examples.

4. Notice that

a b O . 3 2 a b . 9 2
[C d O]‘Z — 7 and L d].Z — 7
have the same image in Z2.
5. Also,
a a 0 0
bl :Z—7Z* and b 0 0| :72°—27°
c c 00

have the same image in Z3.

If there are more columns than rows, use column operations to clear the extra
columns and then delete them. If there are more rows than columns, add columns of
zeros to make the matrix square.

Exercises.
20 . 10 .
1. Show that 0 3 has Smith normal form 0 6l This proves that Z/27Z &
7,/37 = 7./6Z. Check this directly.

2. Try to show that {(2) 2
that Z/2Z © 7./47. # 7./8Z.

0 g} You cannot! Show directly

is equivalent to {



In computing homology groups we will often need to find G/H where G is a free
abelian group and H is a subgroup specified by a basis or generating set. For example
if G = Z? and H has basis {(1,0,0)}, then modding out by H will produce a group
isomorphic to Z2. But it may not be obvious how H fits into G. The next theorem
takes care of this.

Theorem. Let G be a free abelian group with basis {g1,...,9x}. Let H be a
subgroup with generating set {hy,...,h,}. Let

hj = Elenijgi foryg=1,...,p.
Let N be the k x p matrix [n;;]; if p < k one can augment N by adding k — p columns
of zeros so that N is now a square matrix. Then
k

G/H = .

Examples.

5. Let G = {(g1,99,93) and H = (hy,hy) where hy = 291 + g2 — g3 and hy =
g1 + 5g2 + g3. Find the isomorphism class of G/H.

21 -1 1 00
Welet N = |1 5 1 |. The Smith normal form is {0 3 0|. Thus G/H =
00 0 0 00

YAYALYA

6. Let G = (a,b,c,d) and H = (a 4+ b,2b+ ¢,a+ 3b+ ¢,a — d, b+ d). Notice that
we have specified too many generators for H so we do not have a basis. We could
preform column operations and derive a basis by eliminating redundant generators
and then find Smith normal form. But, since the column operations needed to get a
basis are allowed moves in finding the Smith normal form, we might as well skip the
first step as just compute the Smith normal form.

101 1 0 1 00 00
1 23 0 1 : .01 0 0 O
Let N = 011 o ol The Smith normal form is 0000 ol Thus
000 —-11 0 00O00O0
G/H = 72.

The following theorem is also useful to know.

Theorem. Let A be a square integer matrix and G = Z"/AZ". Let |G| denote
the order of G. Then we have

al — |det(A)| if det(A) #0,
Gl = 00 if det(A)=0.
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