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Preface

Different subsets of this material were used in short courses I gave at Tokyo
Tech in January & February 2013 and in July & August 2013 at Southern
Illinois University Carbondale.

Students had a wide variety of backgrounds so there is a review of topo-
logical manifolds, homotopy and homology. Then there is a detailed proof
of a classic result of Louis Moser. It describes which 3-manifolds arise from
Dehn surgery on a torus knot.

The following notations are used.
∼ means homologous 1-chains or homotopic curves
≃ means homeomorphic spaces
∼= means fiber-wise homeomorphic fibered spaces
≡ means isomorphic groups

The rest of the course, not included here, applied Moser’s theorem to the
study of nonsingular Smale flows covering work by Bin Yu, Elizabeth Haynes
and myself. Then we went on to cover some other topics involving flows on
3-manifolds.

• Visually building Smale flows in S3. Topology Appl. 106 (2000), no.
1, 119.

• Bin Yu, Lorenz like Smale flows on three-manifolds. Topology Appl.
156 (2009), no. 15, 24622469.

• Hayne & Sullivan, preprint.

• Krystyna Kuperberg, Counterexamples to the Seifert conjecture. Pro-
ceedings of the International Congress of Mathematicians, Vol. II
(Berlin, 1998). Doc. Math. 1998, Extra Vol. II, 831840.
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Chapter 1

A Quick Introduction to

Topology

1 Continuity

Topology is the abstract study of continuity. In calculus courses a function
f : R → R is defined to be continuous at x = c if lim

x→c
f(x) = f(c). In

analysis students learn that a function f : R → R is continuous at x = c if
for every ǫ > 0 there exists a δ > 0 such that x ∈ (c − δ, c + δ) ⇒ f(x) ∈
(f(c) − ǫ, f(c) + ǫ).

Exercise 1.1. Prove that these two definitions are equivalent. You may
need to review the definition of a limit.

Exercise 1.2. What would “go wrong” if we replaced “...∃δ > 0...” with
“...∃δ ≥ 0...” in the definition of continuity? Which functions would be
continuous?

We say f is continuous on a subset D ⊂ R if it is continuous at each
point in D.

Let X and Y be sets and let f : X → Y be a function. The question we
ask is, what are the simplest structures we need to impose on X and Y for
the statement “f : X → Y is continuous” to be meaningful? Notice we could
modify the definition of continuity as follows. Let f : R → R. Then we say
f is continuous at x = c if for all open intervals I containing f(c) there is an
open interval J containing c such that f(J) ⊂ I.

3



4 CHAPTER 1. A QUICK INTRODUCTION TO TOPOLOGY

Exercise 1.3. Show that this really is equivalent to the previous definition of
continuity. These open intervals need not be symmetric about c or f(c). Does
that really matter? What would go wrong if we used closed sets, including
single point sets, instead of open intervals? In fact we don’t really need open
intervals. We could let I and J be more general open sets. Right? See the
definition of open sets below.

By definition a set U ⊂ R is open if and only if it is the union of open
intervals. The empty set φ is regarded as open since it is a vacuous union.
A subset C ⊂ R is closed if R−C is open. Thus R and φ are both open and
closed.

If we have a notion of which subsets of X and Y are “open” then we can
generalize the definition of continuity. Let O be a collection of subsets of X.
What properties should it have to earn the title of “the open subsets of X”?
On R the open sets where defined as unions of open intervals. Thus any union
of open sets is an open set. We shall require O to have this property. Another
property of open sets in the real line is that finite intersections of open sets
are open. We leave the proof to you. But notice infinite intersections of open
sets need not be open:

∞
⋂

i=1

(−1/n, 1/n) = {0}

which is not open. But the finite intersection property is important and we
shall require O have it. It is also useful to require that φ and X be in O.
This turns out to be all we need. These lead us to the following definitions.

Definition 1.1. A set X together with a collection of subsets O is a topo-
logical space if the following hold.

1. X and φ are in O.

2. The union of any subcollection of O is in O.

3. The intersection of any finite subcollection of O is in O.

Definition 1.2. Let (X,U) and (Y,V) be topological spaces. Let f : X → Y .
Then f is continuous at c ∈ X if for every open subset V set of Y containing
f(c) there is an open subset U of X containing c with f(U) ⊂ V . If f is
continuous at for each c ∈ D ⊂ X we say f is continuous on D.
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Here is an alternative characterization of continuity. Notice that it is a
global definition.

Lemma 1.0.1. Let X and Y be topological spaces and f : X → Y . Then f
is continuous on X if and only if the inverse image of every open subset of
Y is an open subset of X.

Proof. Suppose f−1 takes open subsets to open subsets. Let c ∈ X and let
V be any open subset of Y containing f(c). Let U = f−1(V ). Then U is an
open subset containing c that is mapped into V . Thus f is continuous at c
and since c was arbitrary f is continuous on X.

Now suppose f is continuous for every c ∈ X. Let V be an open subset of
Y and let U = f−1(V ). We need to show U is open. Let x ∈ U . Then V is an
open set containing f(x). Thus there is a open subset Ux ⊂ X containing x
such that f(Ux) ⊂ (V ). We can see that Ux ⊂ U since U is the inverse image
of V . Now U is the union of all the Ux for x ∈ U . Hence U is open.

Example 1.1. Let f(x) = x2 be a function from R to R. Convince yourself
f−1 takes open sets to open sets. But notice f((−1, 1)) = [0, 1) is not open.

Example 1.2. We put four different topologies on the real line R and look at
which functions are continuous. Let U be the usual open sets of R; it is called
the usual topology. Let T = {φ,R}; it is called the trivial topology.
Let D = all subsets of R; it is called the discrete topology. Finally let
F = {U ⊂ R |R − U is finite}|cup{φ}; it is called the finite complement

topology. The reader should check that each is a valid topology. Now
consider the following.

• Any function from (R,D) to any topological space is continuous.

• Any constant function from (R,U) to (R,D) is continuous but f(x) = x
is not.

• Any function from any topological space to (R, T ) is continuous.

• Suppose f : (R,U) → (R,U) is continuous. Then f : (R,U) → (R,F)
is continuous too, but f : (R,F) → (R,U) need not be.



6 CHAPTER 1. A QUICK INTRODUCTION TO TOPOLOGY

2 Interiors and Closures

Let X be a topological space. A subset C ⊂ X is closed if its complement
X − C is open.

Exercise 1.4. Show that intersection of closed sets are closed, that finite
unions of closed sets are closed, but that infinite unions of closed sets need
not be closed.

Let A ⊂ X. The interior of A is the largest open set within A and the
closure of A is smallest closed set that contains A. In symbols

int(A) =
⋃

U∈U

U,

where U is all the subsets of A that are open in X, and

cl(A) =
⋂

C∈C

C,

where C is the set of all closed sets in X that contain A.
Some books use the notations A = cl(A) and Ao = int(A).

Example 1.3. int (cl ( (3, 4) ∪ (4, 7) )) = (3, 7).

Exercise 1.5. What is cl (int ([0, 4) ∪ {7}))?

Exercise 1.6. Look up the “Cantor middle thirds set”. What is its interior?

3 Connectedness

Definition 1.3. A subset C of a topological space X is disconnected if
there exists a pair of open sets U and V such that U ∩ C 6= φ, V ∩ C 6= φ,
U ∩ V = φ and C ⊂ U ∪ V . If no such pair exists then C is connected.

Theorem 1.1. It can be shown that the intervals of the real line are con-
nected. [14].

Exercise 1.7. Prove that the continuous image of a connected space is con-
nected.
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Definition 1.4. Let C ⊂ Q. Then C is a connected component or just
component of Q if the only connected subset of Q that contains C is C.
The number of components can be finite or infinite.

Definition 1.5. A topological space X is path connected if for any two
points x and y in X there is a continuous function f (a path) from [0, 1] into
X such that f(0) = x and f(1) = y.

Exercise 1.8. Prove that a path connected space is connected. (The con-
verse is false. Google: “topologist’s sine curve.”)

Exercise 1.9. The space {1, 2, 3} with the trivial topology is connected and
even path connected. Prove this. (The trivial topology means the only open
sets are φ and the entire set.)

Exercise 1.10. Consider R in the four topologies introduced earlier. Discuss
which subsets of R are connected in each topology.

4 Compactness

Closed bounded subsets of the real line have some important properties. Any
continuous function f : [a, b] → R has a maximum. That is there must be a
number c ∈ [a, b] such that f(c) ≥ f(x) for all x ∈ [a, b]. There are several
ways this can be generalized to other topological spaces. We will present the
most common one which involves the study of open covers of a topological
space. Here is an example.

Let X = [0, 1). Then the collection C = {(−1, 1 − 1

n
) |n ≥ 1} is an

open covering of X. Notice that no finite subcollection could cover X.
Now consider R with open covering {(−n, n) |n ≥ 1}. Again there is no
finite subcover. But for I = [0, 1], or any closed bounded subset of R, any
open covering has a finite subcover. We won’t prove this here, but try some
examples on I. The converse also holds: if a subset of R is not both closed
and bounded then there exists an open covering that does not have a finite
subcover. This leads to the following definition.

Definition 1.6. A topological space X is compact if every open cover has
a finite subcover.

Theorem 1.2. Let f : X → Y be continuous. If X is compact so is its
image in Y .
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Outline of proof. Take an open cover V of f(X). Pull it back with f−1 to
get an open cover of X. It has a finite subcover. Then use the corresponding
subcover of V to get a finite open covering of f(X).

Exercise 1.11. Give an example of a continuous function from R to R that
takes a closed set to one that is not closed.

Exercise 1.12. Give an example of a continuous function from R to R that
takes a bounded set to one that is not bounded.

5 Subspaces and Products

Let (X,O) be a topological space. Let Q be some subset of X. We define a
topology on Q as follows. Let Q = {U ∩ Q |U ∈ O}. In words, a subset of
Q is open if it can formed as the intersection of an open subset of X with
Q. It is easy to prove that this does give a topology on Q. It is called the
subspace topology.

Example 1.4. Consider I = [0, 1] ⊂ R. Then in the subspace topology the
set [0, 0.2) is open since (−1, 0.2) ∩ [0, 1] = [0, 0.2). Now we can talk about
a function on I being continuous or not at the end points. In calculus one
typically use limits from the left and right to define continuity at end points
of closed intervals. For example f(x) =

√
x is continuous on [0,∞).

Exercise 1.13. Let B ⊂ A ⊂ X, where X is a topological space. Then
there are two ways to construct subspace topologies on B; one by using the
subspace topology of A first and the other by considering B ⊂ X directly.
Show that these are the same.

Let (X,X ) and (Y,Y) be topological spaces. Suppose we wish to study
continuous functions on X × Y . We need a topology for X × Y . At first we
might try B = {U × V |U ∈ X & V ∈ Y}. But this does not quite work.
For example consider R × R and the open unit disk {(x, y) | x2 + y2 < 1}.
Surely we want the open disk to be open. Yet it cannot be written in the
form U × V for open subsets of R. Also B is not closed under even finite
unions:

(0, 2)2 ∪ (1, 3)2 ∈\B.
(Although B is closed under finite intersections.) The right definition is this:
let Z be all the possible unions of members of B. Then one can prove that
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Z does give a topological structure for X × Y . It is called the product

topology.

Exercise 1.14. Let Q = I × I be the unit square in R
2. We can define a

topology for Q is two ways. First, use the product topology of the subspace
topologies each of I. Second, use the subspace topology on Q as a subspace
of R × R with the product topology. Convince yourself these are the same.

It is known that the product of compact spaces is compact and the prod-
uct of (path) connected spaces is (path) connected.

6 Homeomorphisms

Now we use the idea of continuity to talk about when two topological spaces
are “essentially the same”. This is similar to the isomorphism problem in
algebra. Let X and Y be topological spaces. Suppose h : X → Y has the
following properties: it is one-to-one, onto, continuous and h−1 is continuous.
Then h is called a homeomorphism and we say X and Y are homeomor-

phic or topologically equivalent. If X is homeomorphic to Y we may
write X ≃ Y .

The major problem in topology is given two topological spaces how can
we determine whether or not they are topologically equivalent. First we
consider finite sets. If X has m elements and Y has n elements then there
cannot be a bijection between them unless m = n. This is just counting.

Let X = {1, 2, 3}. We will put three different topologies on X.

• T1 = {φ, {1}, {1, 2}, {1, 2, 3}}.

• T2 = {φ, {3}, {2, 3}, {1, 2, 3}}.

• T3 = {φ, {1}, {2}, {1, 2}, {1, 2, 3}}.

Check that these are topologies. If we define h : X → X by f(1) = 3,
f(2) = 2 and f(3) = 1 then you can check that h is a homeomorphism from
(X, T1) to (X, T2). But there is no such homeomorphism from (X, T1) to
(X, T3). Here is a proof. Suppose k : X → X was such a homeomorphism.
Then k−1({1}) must be a one element member of T1. Therefore k−1(1) = 1.
But by the same reasoning we must have k−1(2) = 1. Thus k cannot exist.
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Notice T1 has 4 members while T3 has 5. In general, if two topologies
on a finite set are homeomorphic then the number of open sets must be the
same in each.

Exercise 1.15. Let Xn = {1, 2, 3, . . . , n}. How many topological structures
can Xn have? How many are topologically distinct? That is how many
topological equivalence classes are there for Xn? This is probably hard. Try
working it out for n = 3, 4 and 5.

Exercise 1.16. LetX and Y be topological spaces. Supposem is the number
of components of X and n is the number of components of Y . If X ≃ Y
show that m = n.

Exercise 1.17. Let (X,U) and (Y,V) be topological spaces. Let h : X → Y
be a homeomorphism. Show that it induces a bijection between U and V.

Exercise 1.18. Show that topological equivalence really is an equivalence
relation on the collection of all topological spaces. You will need to show the
composition of continuous functions in continuous.

7 Cut points

Is [0, 1) homeomorphic to (0, 1)? Suppose h : [0, 1) → (0, 1) is a home-
omorphism. If we restrict the domain of h to (0, 1) and call this k then
k : (0, 1) → (0, 1) − {h(0)} is a homeomorphism. Check this. But (0, 1) has
just one component and its image has two. Contradiction.

Definition 1.7. Let X be a topological space. Let p ∈ X and let C be the
component that contains p; of course it could be that C = X. If C − p in
the subspace topology is not connected we say that p is a cut point of C
(or X).

In our example the point 0 ∈ [0, 1) is not a cut point but since every point
of (0, 1) is a cut point we derived a contraction. We will do another example.

Example 1.5. We define three sets in R
2 and give each the subspace topol-

ogy. Let A = [−1, 1] × {0}, B = {(x, y) | x2 + y2 = 1} and C = {(x, y) | x2 +
y2 ≤ 1}. Show no two of these are homeomorphic.
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Solution. Suppose h : A → B is a homeomorphism. Let A′ = A − {(0, 0)},
B′ = B − {h(0, 0)} and let h′ be the restriction of h to A′. But this is
impossible since A′ has two components and B′ has only one no matter where
h(0, 0) is. A similar argument shows A is not homeomorphic to C. (How
would you prove that B or C with one point deleted is still connected?)

Now suppose g : B → C is a homeomorphism. LetB′ = B−{(1, 0), (−1, 0)},
let C ′ = C − {g(1, 0), g(−1, 0)} and let g′ be the restriction of g to B′. But
now g′ would be a homeomorphism from a space with two components to a
connected space.

There are limits to this method. We can distinguish between R and R
n

for any n > 1 but not between R
2 and R

3 since both remain connected when
a finite number of points are deleted.
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Chapter 2

Manifolds

1 Definitions

An n-dimensional manifold without boundary, M , is a topological
space such that for each point x ∈ M there exists an open set contain-
ing x that is homeomorphic to an open ball in R

n. (We may assume the
homeomorphism is to the open unit ball centered at the origin and takes x
to the origin. [10]) If there are points y in M for which this fails but for
which there is a subset H of M containing y and a homeomorphism

h : H → {(x1, x2, . . . , xn) ∈ R
n | x2

1 + x2

2 + · · · + x2

n < 1 andx1 ≥ 0}

taking y to the origin, then M is a n-dimensional manifold with bound-

ary. Such points y form the boundary of M which is denoted ∂M . The
interior of M is int(M) = M − ∂M .1

Here are some standard examples of manifolds. The unit interval I = [0, 1]
is a 1-manifold with ∂I = {0, 1}. A circle or 1-sphere, also denoted S1, is
any space homeomorphic to {(x, y) | x2 + y2 = 1}. A 2-disk, D2, is a any
space homeomorphic to the closed unit disk {(x, y) | x2 + y2 ≥ 1. Notice that
∂D2 = S1 and ∂S1 = φ. A 2-sphere, S2, is a any space homeomorphic to the
unit sphere in R

3, {(x, y, z) | x2 + y2 + z2 = 1}. A 3-ball, B3, is a any space
homeomorphic to the closed unit ball in R

3, {(x, y, z) | x2+y2+z2 ≤ 1}. A 3-

sphere, S3, is any space homeomorphic to {(w, x, y, z) |w2+x2+y2+z2 = 1}
as a subspace of R

4. The torus T 2 is S1 × S1 or any space homeomorphic to

1Manifolds are also assumed to be Hausdorff and second countable.

13
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this. The n-spheres and the torus do not have boundary. All of these spaces
are path connected.

2 Gluing, Connected Sums and Compactifi-

cation

We won’t be precise in our definitions here but will proceed by examples. If
we “identify” the end points of the unit interval we get a new manifold that
is homeomorphic to the circle. If we take the square I × I and identify each
point on the bottom edge with the point on the top edge that is above it
we get a new manifold that is homeomorphic to a cylinder. We say that we
have glued the top and bottom edges. If instead of gluing (x, 0) to (x, 1) we
glued (x, 0) to (1−x, 1) the result would be a Möbius band! If we glue (x, 0)
to (x, 1) and (0, y) to (1, y), for x, y ∈ I, the result is a torus.

Exercise 2.1. Explain why a Möbius band is not homeomorphic to an an-
nulus but a strip with a full (360o) twist is.

If we take two closed disks and identify their boundaries the result is a
2-sphere. If we take two closed 3-dimensional balls, B1 and B2, and identify
points on their boundary 2-spheres the resulting 3-manifold without bound-
ary is a 3-sphere. See Figure 2.1. The identification is achieved by choosing
a homeomorphism h : ∂B1 → ∂B2 and identifying x with h(x) for each
x ∈ ∂B1. It can be proven that the topological type of the result is indepen-
dent of the choice of h [10].

Figure 2.1: Gluing two disks gives a 2-sphere; gluing two balls gives a 3-
sphere.
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For any two path connected 3-manifolds Mi, i = 1, 2, we can form the
connected sum as follows. Select a closed 3-ball in each that does not
meet the boundary (if there is one) and remove their interiors. Now choose
a homeomorphism from the new boundary 2-sphere of M1 − int B1 to the
new boundary 2-sphere of M2 − int B2. Glue the two 2-spheres using this
homeomorphism. The new manifold is denoted M1#M2 and its topological
type is independent of choice of the 3-ball and the homeomorphism [6]. Figure
2.2 illustrates the result of forming the connected sum of two solid tori; it
looks like a solid torus with a smaller solid torus carved out of it; the dashed
circle represents the 2-sphere where the gluing occurred.

Figure 2.2: The connected sum of two solid tori

If the only way a manifold M can be written as a connected sum is
M ≃ M#S3 then we say M is prime. Every compact path connected 3-
manifold without boundary can be written uniquely as a connected sum of
prime 3-manifolds! [6]

We give another way to construct the 3-sphere this time by gluing two
solid tori together. Figure 2.3 shows how to see this starting from gluing two
3-balls together. You decompose one of the 3-balls into a solid torus and a
solid cylinder (in the donut hole). We do the gluing in two steps. First glue
the top and bottom disks on the cylinder to the other 3-ball. This forms a
solid torus. Now glue the two solid tori together and voila, we have realized
S3 as the union of two solid tori.

There is yet another way to construct spheres that will be useful for
us. Consider the union of the real line R with a new point called ∞. Let
R = R ∪ {∞}. Topologize R as follows. Let the open sets be all the open
subsets of R together with sets of the form {∞}∪O where R−O is compact.
With this topology R is homeomorphic to S1. This is called the one point

compactification. The same process can be applied to make R
2 ∪ {∞}

homeomorphic to S2 and R
3 ∪ {∞} homeomorphic to S3.



16 CHAPTER 2. MANIFOLDS

Figure 2.3: Realizing S3 as the union of two solid tori

3 Knots

A knot is a circle embedded in the interior of a 3-manifold, that is there is a
homeomorphism h : S1 → K ⊂ Int M . A knot is said to be an unknot if it
forms the boundary of a disk in M . Thus the unit circle U in the xy-plane in
R

3 is unknotted. Two knots K1 and K2 in M are regarded as equivalent or
as having the same knot type if one can be deformed into the other without
cutting the knots or the surrounding space. This is formalized by saying they
are ambiently isotopic, which we define next.

Definition 2.1. Two knotsK1 andK2 inM are ambiently isotopic if there
is a continuous function S : M × I → M such that S(x, 0) is the identity
(hence S(K1, 0) = K1), S(K1, 1) = K2 and for each t ∈ I S(x, t) : M → M
is a homeomorphism.

Sometimes it is useful to give a knot an orientation. For us this will
just mean picking a preferred direction and indicating it with an arrowhead.

Given a knot K in a 3-manifold M a tubular neighborhood of K is a
solid torus that misses ∂M and has K as its core. It is denoted by N(K).
See [18] regarding the existence of tubular neighborhoods. A solid torus
whose core is unknotted is said to be standardly embedded; likewise for
the boundary of such a solid torus.
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Let V be a standardly embedded solid torus in S3 and let T = ∂V . A
knot in T is called a torus knot. The simplest torus knot, besides the
unknot, is the trefoil; see Figure 2.4.

Although only unknots bound disks every knot in S3 is the boundary of
some orientable (i.e., two sided) surface. Such a surface is called a Seifert

surface. We won’t prove this fact here (see [3]) but Figure 2.4(upper left)
shows a Seifert surface for the trefoil.

Figure 2.4: Three views of the trefoil knot

Exercise 2.2. Convince yourself that the three curves in Figure 2.4 are am-
biently isotopic. Convince yourself that the Seifert surface shown is homeo-
morphic to a torus with the interior of a closed disk removed.

Let V be a standardly embedded torus in S3 with T = ∂V . A curve
on T that bounds a disk in T is considered trivial. A nontrivial curve on T
that bounds a disk within V is called a meridian. A nontrivial curve on T
that meets a meridian exactly once transversely2 is called a longitude. A
longitude that bounds a disk in the closure of S3 − V is called a standard

longitude. A standard longitude and a meridian that meet at only one
point form a standard longitude-meridian pair; they can be used to put
coordinates on T .

Any two meridians of V are ambient isotopic within ∂V . This is not true
for longitudes. In Figure 2.5 we show two longitudes where one wraps around

2Transversely means that one curve passes through the other; the curves cannot be
tangent.
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the solid torus several times. But any two longitudes are ambient isotopic
within V . This subtle point is important to keep in mind. Given any two
longitudes on a solid torus V we can find a homeomorphism from V to V
that takes one longitude to the other. This involves twisting the torus.

Figure 2.5: Meridian-longitude pairs

If a solid torus is given as being inside S3 but its core is knotted, we can
define a preferred longitude. A preferred longitude of a solid torus V in
S3 is a longitude that is the boundary of a Seifert surface of the core of V
minus the interior of V . It can be shown that up to ambient isotopy in ∂V
there is only one choice for the preferred longitude [3, 18].

If the torus is standardly embedded in S3 then a preferred longitude will
bound a disk in S3−Int V and is easy to visualize; it is the same as a standard
longitude. Determining a preferred longitude of a knotted solid torus is not
visually obvious. Figure 2.6 shows a preferred longitude for a trefoil solid
torus. We will use this later. (A preferred longitude has linking number zero
with the core [18].)

We will say a little more about torus knots. Let L and M be a standard
longitude-meridian pair for standardly embedded solid torus V in S3. Let
T = ∂V . Let h : [0, 1)2 → T be such that the first factor is mapped onto
L and the second onto M . A linear function, y = sx from R to R can be
made into one whose graph is in [0, 1)2 by using modulo one arithmetic. It
is easy to prove that the graph comes back to (0,0) if and only if the slope
s is rational. This image can then to mapped onto T as a torus knot. Let
s = m/l and assume it is in reduced form. Then the knot formed in T is
called an (l,m)-torus knot. It wraps around the longitude l times and the
meridian m times.

Thus L is a (1, 0)-torus knot and M is a (0, 1)-torus knot (M has infinite
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Figure 2.6: A preferred longitude of the trefoil knot based on a figure from
[18].

slope). The trefoil in the lower part of Figure 2.4 is a (2, 3)-torus knot. It
can sometimes be useful to allow (0, 0) to represent a trivial torus knot. If
l = 0 than m can only be ±1 and if m = 0 then l = ±1. If neither l or m is
zero then the only restriction is that l and m be coprime, that is they have
no prime common factors.

If we consider ambient isotopy only within T then there is a one-to-
one correspondence between the allowed pairs and the knot types on T up
to sign. But thinking of the knots as being in S3 there are the following
equivalences: (0, 0), (m,±1), (±1, l), are unknots, (m, l) is equivalent to
(l,m) and changing both signs of l and m does not change the knot type.
Changing only one sign gives a mirror image. (A knot is not usually ambiently
isotopic to its mirror image, but in some applications the distinction is not
important and the definition of knot equivalence is broadened to make mirror
images equivalent.)

Exercise 2.3. Which of the knots in Figure 2.7 is equivalent to a trefoil?

Exercise 2.4. For s = 2/5, 4/5 and −7/3 plot y = sx mod 1 on I2. Then
carefully draw these on a torus.

Exercise 2.5. Which torus knots are equivalent if we only allow ambient
isotopies within V ?
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Figure 2.7: Figure for Exercise 2.3

4 Surfaces

The set, up to homeomorphism, of compact, connected, one dimensional
manifolds without boundary is {S1}. The set, up to homeomorphism, of
compact, connected, one dimensional manifolds with nonempty boundary is
{I}. See [10] for the proofs.

For 2-manifolds the problem is a little harder. A 2-manifold is often
called a surface. The theory behind the topological classification of surfaces
is given in detail in many places: see [7, 9] for elementary treatments or
[12, 14, 10] for more advanced ones. Here we will just state the main results
without proof.

We can break the list of 2-manifolds into two subsets, orientable and
nonorientable. We know that S2 and T 2 are 2-manifolds. They are two-sided
and hence orientable. We can make additional 2-manifolds in the following
way. Let S be a surface without boundary. Let D1 and D2 be disjoint closed
disks in S. Remove their interiors. Then attach S1 × I to S − int(D1 ∪D2)
by gluing S1 × 0 to ∂D1 and S1 × 1 to ∂D2. This creates a new surface. The
process is called adding a handle. Let Fn be the surface created by adding
n handles to S2. Then the complete list of compact, connected, orientable
surfaces without boundary is {S2 = F0, T

2 = F1, F2, F3, . . . }.
There is a similar process for creating nonorientable surfaces calling adding

a cross-cap. Let S be a surface without boundary and remove the interior of
one closed disk. Attach a Möbius band to this surface by gluing the bound-
ary of the Möbius band to the boundary where the disk was removed. This
creates a new surface. Let Gn be the result of adding n cross-caps to S2.
Then the complete list of compact nonorientable surfaces without boundary
is {G1, G2, . . . }. The first two in this list have names: G1 is the projective

plane, denoted P2 and G2 is the Klein bottle - drink from it at your own
risk! (P 2 is sometimes called the real project plane and denoted RP 2.)
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You might think that adding a cross-cap to Fn would create a nonori-
entable surface not on the list. But it can be show that adding a cross-cap
to Fn gives G2n+1. It is also known that adding a handle to Gn gives Gn+2.

To construct compact surfaces with boundary from a surface S we can
remove the interiors of a finite number of disjoint disks. In fact this gives
all possible compact surfaces with boundary. Thus for any surface with
boundary the boundary is a disjoint union of circles.

The genus of Fn or Gn is n and the genus of a compact surface with
boundary is just the genus of the surface formed by attaching a disk to each
boundary component. The Euler characteristic of a surface S, denoted
χ(S), is defined in the following way. Build the surface S using polygons.
Then

χ(S) = V − E + F

where V is the number of vertices, E is the number of edges and F is the
number of faces. It can be shown that χ(S) is independent of the polygon
model used for S.

Exercise 2.6. Show that χ(Fn) = 2 − 2n and that if we remove m disks
from Fn then χ = 2 − 2n −m. Develop similar formulas for nonorientable
surfaces.

Orientable

Nonorientable

Figure 2.8: Surfaces

The connected sum can be defined for surfaces. Then adding a handle is
equivalent to taking the connected sum with a torus. Adding a cross-cap is
equivalent to taking the connected sum with a projective plane. Then the list
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≃

Figure 2.9: Torus with cross-cap ≃ sphere with 3 cross-caps.

of compact connected surfaces without boundary is S2, #n
i=1T

2
i , and #n

i=1P
2
i

for n = 1, 2, 3, . . ..

5 Lens Spaces

We saw earlier that we can construct S3 by gluing two solid tori together.
If you observe that construction carefully you will see that the gluing map
takes a standard meridian-longitude pair on one solid torus to another one
on the other but that the meridian maps to a longitude and the longitude
maps to a meridian.

What happens if we do the gluing differently? Let h : ∂V1 → ∂V2 be a
homeomorphism from the boundary of solid torus V1 to the boundary of solid
torus V2 that takes a meridian to a meridian and a longitude to a longitude.
For example h could just be the identity map. What do we get?

Let (L1,M1) and (L2,M2) be meridian-longitude pairs of V1 and V2 re-
spectively. We use the identity map for h, so h(M1) = M2 and h(L1) = L2.
For i = 1, 2 let Di be a disk in Vi with boundary Mi. Cut V1 and V2 along
D1 and D2, push the new ends apart and take their closures to create two
cylinders, C1 and C2, respectively. Denote the top of Ci by D′

1, i = 1, 2, and
the bottom by D′′

i . We can define h′ : ∂C1−int(D′
1∪D′′

1) → C2−int(D′
2∪D′′

2)
to be compatible with h and glue C1 to C2. The boundary of C1∪C2 has two
components: S1 = D′

1 ∪D′
2 and S2 = D′′

1 ∪D′′
2 . These have to be 2-spheres.

Thus C1 ∪ C2 ≃ S2 × I. We can recover V1 ∪h V2 by gluing S1 to S2. The
resulting manifold is homeomorphic to S2 × S1.

We want to generalize this and classify all manifolds that can be con-
structed by gluing two solid tori together. The resulting spaces are call lens

spaces. More detailed treatments can be found in [15, 18]. Let h : ∂V1 → ∂V2

be a homeomorphism from the boundary of solid torus V1 to the boundary
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of solid torus V2. Let L = V1 ∪h V2. Select a meridian-longitude pair for each
and call them (Li,Mi), for i = 1, 2 respectively. Notice we did not say the
longitudes were standard. That’s because these are abstract tori; they are
not embedded in a larger space so we cannot talk about a curve bounding
an outside disk – there is no outside yet! Nonetheless, we can still use them
for create coordinate systems.

Suppose h(M1) is a (p, q)-curve on V2. Let D1 be a disk in V1 with
boundary M1 and thicken it up a little bit to get a ball B1 ≃ D1 × I within
V1. The complement of the of B1 in V1 is another ball whose closure we
denote B′

1. Now B2 = h(B1) is a ball in L. Consider the space B2 ∪h V2;
it is L with the interior of B′

2 = h(B′
1) removed. Thus the topology of L

does not depend on how B′
2 is glued in. Hence L is determined by B2 ∪h V2

which only depends on the (p, q) curve. Thus we define the (p, q)-lens space,
also denoted L(p, q), to be the result of gluing a solid torus V1 to V2 with a
meridian of V1 going to a (p, q) curve on V2.

We have that L(1, 0) ≃ S3 and L(0, 1) ≃ S2 × S1. Note that for n > 1
L(n, 0) and L(0, n) are not defined. Neither is L(0, 0).

Exercise 2.7. Convince yourself that L(1, q) ≃ S3 for all q.

While (p, q) determines L(p, q) the relationship is not unique. First, it
can be shown that changing the signs of p or q does not affect the topology.
It can be show that if L(p1, q1) is homeomorphic to L(p2, q2) we must have
p1 = ±p2. It is also known that L(p, q) ≃ L(p, q+np) for all integers n. Thus
we may assume 0 < q < p except for the cases L(0, 1) and L(1, 0). There is
an additional symmetry and it turns out for 0 < q1 < p and 0 < q2 < p, with
p relatively prime to each qi, is it known that L(p, q1) ≃ L(p, q2) if and only
if ±q1q±1

2 = 1 mod p1.

Exercise 2.8. In Table 5.1 we have listed the lens spaces for p = 2 to 15 and
given each equivalence class for a given value of p a different color. Verify it
is correct and compute the next two rows. Hint: I wrote a Maple script to
test for equivalence.

Exercise 2.9. The space formed by identifying opposite points on the bound-
ary of a 3-ball is called the real projective space of dimension three and is
denoted RP 3 or just P 3. Show that L(2, 1) ≃ P 3.

Exercise 2.10. Show that S2×S1 contains an embedded Klein bottle. Find
a lens space that contains an embedded projective plane, P 2.
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Remark. In most references L(0, 1) and L(1, 0) are not accepted as lens
spaces. This makes stating some theorems cleaner.

Remark. Lens spaces are prime.
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Chapter 3

Homology

The idea in algebraic topology is that each topological space can be associated
to some algebraic object like a group. If two given spaces have non isomorphic
associated groups then they cannot be homeomorphic. Thus a topological
problem is reduced to an algebraic one. Here we develop the first homology

group of a manifold. It can be defined for any space but we will be working
with manifolds. If G1 and G2 are isomorphic groups we will write G1 ≡ G2.

1 From simplices to groups

Let O = {(0, 0)}, I = [0, 1] × {0} and let T be the triangle shaped disk in
R

2 with vertices (0, 0), (0, 1) and (1, 0). Given a manifold M we define three
groups. Consider first the set S0 of all maps from O into M . These are called
zero dimensional simplices or 0-simplices and can be thought of as just
the points of M . Then let C0 be all formal sums of the form n1p1 + · · ·+nkpk
where each pi ∈ S0 and each ni ∈ Z. These are called the 0-chains of M .
We add elements of C0 is the obvious way and let 0 stand for the null symbol.
For example,

(2p1 + 3p2 − p3) + (p1 − 3p2 + 2p4) = 3p1 + 0p2 − p3 + 2p4 = 3p1 − p3 + 2p4.

With this C0 becomes a group. We also declare that P +Q = Q+P for any
two members of C0 so that C0 is Abelian. We call C0 the 0-chain group.

Next let S1 be the set of all continuous maps of I into M . These are called
1-simplices. We define C1, the 1-chain group, just as we did the 0-chain
group by using linear combinations of 1-simplices with integer coefficients.

27
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Finally define the set of 2-simplices, S2 as, you guessed it, the set of all
continuous maps from T into M and then define 2-chain group C2 as formal
linear combinations of 2-simplices with integer coefficients.

In each case we have n-simplices generating n-chains forming the n-chain
group.

The three chains groups, by themselves, do not tell us much about the
manifold, but the interactions between them will. We define two group ho-
momorphisms ∂1 : C1 → C0 and ∂2 : C2 → C1, called the boundary maps,
as follows. Let s ∈ S1. Define ∂1(s) = s(1)− s(0), that is the two end points
thought of as a 0-chain. We can linearly extend this set map from S1 into
C0 to a homomorphism from C1 into C0. For example, let u and v be in S1.
Then

∂1(2u+ 3v) = 2u(1) − 2u(0) + 3v(1) − 3v(0).

Why the minus sign? Suppose u and v are such that u(1) = v(0). Then
∂(u + v) = v(1) − u(0) which seems “natural”. Why? We also impose the
following, that for any 1-simplex u(t) we set the map t→ u(1− t) to be −u.

Defining ∂2 is a little harder. The disk T has three line segments that
make up its boundary. Each can be thought of as a copy of I. Let z ∈ S2. We
can think of each restriction of z to a boundary segment of T as a 1-simplex.
Our definition of ∂2z will be some linear combination of the three 1-simplices
defined by restricting z to each edge segment of T . The coefficients will be
±1. To get the signs “right” will take a little effort. First we represent z
by the image of T ’s vertices in order. Suppose z(0, 0) = a, z(1, 0) = b and
z(0, 1) = c. Then we would write [abc] for z. Obviously many other 2-
simplices would have the same symbol; this will not hurt anything. Now for
the 1-simplex given by z restricted to the edge from (0, 0) to (1, 0) write [ab].
Define [bc] and [ac] similarly. Then we define ∂2z = ∂2[abc] = [bc]− [ac]+[ab].
Now watch.

∂1∂2(z) = ∂1([bc] − [ac] + [ab]) = (c− b) − (c− a) + (b− a) = 0.

So, the boundary of the boundary is empty! This is what we wanted. Now
extend ∂2 linearly to get a homomorphism from C2 into C1.

Since ∂1∂2c = 0 for any c ∈ C2 (convince yourself of this) we know the
image of ∂2 is contained in the kernel of ∂1; in fact it is a subgroup. The
kernel of ∂1 is called the subgroup of 1-cycles. The image of ∂2 is called the
subgroup of 1-boundaries, that is they are 1-cycles that are the boundary
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of some 2-chain. The first homology group of a manifold M is defined to
be

H1(M) =
kernel ∂1

image ∂2

.

It contains a wealth of information about M . One can go on to define the
n-chain groups and boundary maps ∂n : Cn → Cn−1 for any n and then
define the n-th homology groups by Hn(M) = kernel ∂n/image ∂n+1. We will
only need H1(M).

If c1 and c2 are 1-cycles in the same homology class, this means there
exist a two 2-chain d such that ∂2d = c1 − c2, we say that c1 is homologous

to c2 and write c1 ∼ c2. If c1 is in the trivial equivalence class, that is it is in
the identity element of H1, then we say c1 is null homologous.

For 1-simplices it is easy to that [ab] = −[ba]. Switching the vertices
a and b changes the orientation of the 1-simplex. What happens when we
reorder the vertices of [abc]? Observe that

∂2[abc] = [bc] − [ac] + [ab] = [ab] + [bc] + [ca]

while

∂2[bac] = [ac] − [bc] + [ba] = −[ab] − [bc] − [ca] = −∂2[abc].

Since it is useful to set [abc] = −[bac]. In general any time we switch two
adjacent letters the sign changes. We can think of the underlying triangle as
having one of two orientations, clockwise or counterclockwise. In Figure 3.1
[abc] is ccw, while [bac] is cw.

Exercise 3.1. The check that switching any two adjacent vertices changes
the sign and that

∂2[abc] = ∂2[cab] = ∂2[bca] = −∂2[acb] = −∂2[bac] = −∂2[cba].

Exercise 3.2. Consider the square shown in Figure 3.2 which is covered by
a two 2-simplices, T1 and T2. If both have the same orientation show that
∂(T1 + T2) is a 1-cycle covering the boundary of the square, but if they have
different orientations this is not true.

Next we find the first homology groups of some of the manifolds we have
looked at. We won’t be rigorous here. I want to focus on the intuition for
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aa bb

cc

Figure 3.1: Left: [abc]. Right: [bac].

a b

cd

T1

T2

Figure 3.2: Square

simplicity and because it is the basic intuitive idea that led to the definition
of the homology groups. Start with the disk D2. Draw some segments that
form a cycle with no self crossings. Notice they are the boundary for a
smaller disk. Thus in H1(D

2) that 1-cycle is in the same equivalence class
as the identity. Cycles in D2 can be very complicated and have many self
crossings. But the algebra works out such that they are all the boundary of
some 2-chain. Thus, H1(D

2) = 0, the trivial group with only the identity
element. For the 2-sphere we get the same result. So far homology is not too
interesting!

Now consider an annulus A. It is easy to draw a 1-cycle that goes around
the hole and thus does not bound any 2-chain; see Figure 3.3. Therefore
H1(A) is not the trivial group. If we draw two non-intersecting 1-cycles with
no self crossings around the hole then together they form the boundary of a
smaller annulus which is the image of some 2-chain. Thus these two 1-cycles
are in the same homology class. (We are glossing over some orientation
issues.) Consider the 1-cycle formed by taking one of the 1-cycles in Figure
3.3 and assigning a weight of 5 to each of the 1-simplices. We can think of it
as representing walking around the annulus five times. It still has boundary
0 and there is no 2-chain whose boundary it could be. It turns out the
homology class of any 1-cycle that “goes around once” generates H1(A) and
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that H1(A) ≡ Z.

Figure 3.3: 1-cycles in a disk and an annulus

If we take a disk and cut out two disjoint smaller disks then H1 ≡ Z
2,

and so on. Thus H1 is a kind of hole counter. Now consider the torus T 2.
How many holes does it have? It might seem like it has only one, but in a
sense it has two. The donut hole in the middle but also the “hollowed out”
interior. It turns out we can generate the homology group with two classes:
the equivalence class of a 1-cycle going around the “donut hole” is one and a
1-chain going around meridian of the tube is the other. Thus, H1(T

2) ≡ Z
2.

Exercise 3.3. It turns out H1(S
1) ≡ Z. Justify this.

Exercise 3.4 (Hard). When we punched a hole in the disk the homology
group changed from trivial to one isomorphic to Z. This is because certain
1-cycles that where 1-boundaries in the disk where no longer 1-boundaries in
the annulus. Now, suppose we punch a hole in a torus. Will the homology
group change? Are there 1-boundaries that no longer bound a 2-chain? What
if we punch out two holes?

Exercise 3.5. For a manifold M , H0(M) is defined to be C0/image ∂C1.
Convince yourself that ifM has n path connected components thenH0(M) ≡
Z
n−1.

2 Induced homomorphisms

Let f : M → N be continuous. Let [A] ∈ H1(M) where A =
∑

nisi with the
si’s being 1-simplices and the ni’s integers. We define f∗([A]) = [

∑

nif ◦ si].
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This determines a function f∗ : H1(M) → H1(N). It can be shown that
f∗ is a group homomorphism and it is called the induced homomorphism
of f . If f is a homeomorphism then f∗ is an isomorphism. But there are
non-homeomorphic spaces with isomorphic homology groups.

Example 3.1. We can now prove that S2 and T 2 are not homeomorphic
and that neither is homeomorphic to S1.

3 Homotopy

Definition 3.1. Two continuous functions fi : M → N for i = 0, 1 are
homotopic if there exists a continuous function H : M × I → N such that
for all x ∈M

1. H(x, 0) = f0(x),

2. H(x, 1) = f1(x).

Let f : M → R
n, be continuous where M is any compact space. Then f

is homotopic to the map z : M → {0} ⊂ R
n. There is a way to paste ho-

motopies together and using this one can show any two continuous functions
from M into R

n are homotopic. The same is true if R
n is replaced by Sn or

Dn.

Example 3.2. Let C be a compact topological space and f : C → R
n be

continuous. Let H : C × I → R
2 be given by H(x, t) = f(x) · (1 − t). Then

H(x, 0) = f(x) and H(x, 1) = (0, 0).

But if we consider functions from S1 into an annulus this is not true. It
can be shown that two maps from S1 into an annulus are homotopic if and
only if they have the same winding number with respect to the hole. (It is
possible to use this idea to define homotopy groups. It the case of an annulus
the homotopy group and the homology group are isomorphic; this is not true
in general.)

It is possible to extend the idea of homotopy to chains. Roughly speaking,
we define two n-chains to be homotopic if there if a homotopy between the
underlying sets and that respects the weight on each simplex. It can be
shown that if two n-cycles are homotopic they are also homologous. This is
intuitively plausible but technically messy to prove.
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Definition 3.2. Let X and Y be topological spaces. If there exists contin-
uous functions f : X → Y and g : Y → X such that f ◦ g and g ◦ f are
homotopic to identity maps then we say X and Y are homotopic spaces.

Any two spaces that are homeomorphic are obviously homotopic. The
classification of topological spaces up to homotopy equivalence is coarser
than for topological equivalence.

Example 3.3. Let U be the unit circle on R
2 given the subspace topology.

Let U ′ = U ∪ [1, 2]× {0} given the subspace topology from R
2. Then U and

U ′ are homotopic spaces.

Example 3.4. Let T be the subspace of R
2 given by [−1, 1]×{0}∪{0}×[0, 1].

We will show that T and [−1, 1] are not homeomorphic but are homotopic.

Proof. We can use cut point theory to show they are not homeomorphic. To
show they are homotopic let H((x, y), t) = (x, y · (1 − t)).

t = 0 t = 1

2
t = 1

Figure 3.4: Homotopy for Example 3.4

The following theorem, which is proved in courses on algebraic topology,
is of major importance.

Theorem 3.1. Homotopic spaces have isomorphic homology groups.

Thus I, S1, and T 2 are not homotopic to each other. However, there
are homotopies between an annulus and S1, between T 2 minus a point and
the wedge of two circles (a “figure 8”), between I, D2 and a point. A space
homotopic to a point is said to be retractable.

Exercise 3.6. Construct homotopies for the cases discussed above.
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Example 3.5. Let M̈ denote the Möbius band. It is homotopic to its core
which is a copy of S1. Therefore H1(M̈) ≡ H1(S

1) ≡ Z. A 1-cycle, C,
running along the core could not be the boundary of a 2-chain. Its equivalence
class generates H1(M̈). But you might think a 1-cycle that traces along
the boundary of M̈ would be the boundary of a 2-chain that covers the
Möbius band and would thus be null homologous. But this is not the case.
Consider the 2-chain shown in Figure 3.5. It covers M̈ and each 2-simplex
has coefficient 1. But no matter how we orient the 2-simplices the boundary
of their sum does not give a 1-cycle that covers ∂M̈ .

Figure 3.5: Möbius band

Exercise 3.7. Prove that it is impossible to orient the 2-simplices in Figure
3.5 so that the boundary of the 2-chain formed by there sum coincides with
the boundary of the Möbius band.

The problem is that M̈ is unorientable; a 1-cycle that covers once the
boundary of an orientable surface will be the boundary of some 2-chain and
hence be null homologous.

Example 3.6. Recall the construction of the projective plane, glue a disk
along its boundary to the boundary of a Möbius band. Notice that now a
1-cycle, call it B, covering the boundary of the Möbius band bounds a disk -
which is certainly an orientable surface. Thus B is null homologous. Since B
is homologous to 2C, where C is a cycle along the core of the Möbius band,
we have 2C ∼ 0. This can be used to show that

H1(P
2) ≡ Z/2Z.

We can no longer think of H1 as simply a hole counter since in this case it is
picking up more subtle information about the manifold.
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We state two useful facts.

Fact. The homology groups of surfaces are H1(Fn) ≡ Z
2n and H1(Gn) ≡

Z
n−1 ⊕ Z/2Z. If we remove m disks from a surface without boundary the

effect on H1 is to increase the exponent of Z by m − 1. (Think about why
this is.)

Fact. For lens space it is known that H1(L(p, q)) ≡ Z/pZ. It follows that if
L(p1, q1) is homeomorphic to L(p2, q2) we must have p1 = ±p2, as mentioned
earlier. (Think about why this is.)

4 Finitely Generated Abelian Groups

The first homology group of any compact manifold is a finitely generated
Abelian group. The name means just what it says. These are Abelian groups
that can be generated by a finite number of elements. For example Z is
generated by {1}. So is Z/3Z = {0, 1, 2}, where the “1” means something
different; it is the equivalence class of integers whose remainder upon division
by 3 is 1. The subset {(1, 0), (0,−1)} of Z

2 generates the group Z
2 using

vector addition.

Therefore we take a brief algebraic detour to study this class of groups.
The set Z

n is an Abelian group under vector addition. It can be generated
by a finite number of elements. (Give an example of a generating subset.
Give another.) Let A be an n × n matrix with integer entries. It induces
a function from Z

n to Z
n via matrix multiplication. We will denote this

function by A so A : Z
n → Z

n. By standard facts from linear algebra it is a
homomorphism. The image of the homomorphism is a subgroup of Z

n which
we denote by AZ

n. For example multiplication by 2 from Z into Z has the
even integers as its image. In our notation 2Z = {. . . ,−2, 0, 2, . . .}. (We are
writing the 1×1 matrix [2] as 2.)

Given an Abelian group G and a subgroup H one can form the quotient
group G/H . The members of G/H are subsets of G that differ by a member
of H . For example, Z/2Z has two elements, the even integers and the odd
integers. The induced addition operation is that even plus even is even, odd
plus odd is even and even plus odd is odd. We tend to be sloppy and write
Z/2Z as {0, 1}, taking addition to be addition mod 2, but really the 0 stands
for the set of even integers and the 1 stands for the set of odd integers.
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Let G = Z/nZ. If n = ±1 then nZ = Z and G is the trivial group, which
has one element. In general the number of elements in G, that is the order

of G, is |n|, unless n = 0. In this case 0Z = {0} and G ≡ Z and so has
infinite order.

Let A =

[

2 0
0 3

]

and G = Z
2/AZ

2. The reader should work out that

G ≡ Z/2Z⊕Z/3Z which has six elements. If instead A =

[

2 0
0 0

]

the reader

should check that G ≡ Z/2Z ⊕ Z, which has infinitely may elements. In
general we have the following theorem which we shall not prove.

Theorem 3.2. Let A be an n×n integer matrix. Then the order of Z
n/AZ

n

is | detA| if detA is not zero and is infinite if detA = 0.

Quite a bit more is true. Any finitely generated Abelian group is isomor-
phic to Z

n/AZ
n for some n and integer n×n matrix A. While it can happen

that different matrices yield isomorphic groups there is a simple algorithm
involving row and column operations that determines when this happens [4].

Exercise 3.8. a. Verify the claims made just before Theorem 3.2.

b. Show that the groups Z/2Z ⊕ Z/3Z and Z/6Z are isomorphic.

c. Show that the groups Z/2Z ⊕ Z/2Z and Z/4Z are not isomorphic.

d. Show that
Z

2

[

2 0
0 1

]

Z2

is isomorphic to Z/2Z.

e. Show that
Z

2

[

2 2
0 3

]

Z2

is isomorphic to Z/2Z ⊕ Z/3Z.
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Torus Maps

It is possible and useful to represent a homeomorphism from a torus to itself
or another torus by a 2 × 2 matrix.

Think of the torus T 2 as given by I×I with the opposite edges identified.
A 2 × 2 integer matrix A induces a map from R

2 to itself that preserves the
integer lattice. If we use arithmetic modulo 1 then A determines a map from
[0, 1) × [0, 1) to itself. From this we can get a map from T 2 to T 2.

Exercise 4.1. Let A =

[

5 1
3 −4

]

. Then define A(x, y) = (5x + y, 3x − 4y)

mod 1. Thus, A
(

1

2
, 1

6

)

=
(

2

3
, 5

6

)

. However, this map is not one-to-one. Find
another point (x, y) ∈ [0, 1) × [0, 1) such that A(x, y) = (2

3
, 5

6
). In fact this

map is 23-to-1! Find 23 points (x, y) ∈ [0, 1)×[0, 1) such that A(x, y) = (0, 0).

Fact. A 2× 2 integer matrix A induces a homeomorphism on T 2 if and only
if det(A) = ±1.

Exercise 4.2. Prove this.

Exercise 4.3. a. Let A =

[

2 1
a b

]

and suppose det(A) = ±1. What are all

the possible integer values for a and b?

b. Let A =

[

2 4
a b

]

. Are there any integer values for a and b such that

det(A) = ±1?

Exercise 4.4. Let A =

[

2 1
1 1

]

. In Figure 4.1 we show the image of I × I

under the action of A in R
2 and how it wraps around the torus when using
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mod 1 arithmetic. Redo this for

[

2 1
3 2

]

. Try to draw each of these on a

donut!

1

2

3
4

1

2

3
4

Figure 4.1: A linear torus homeomorphism

These maps are linear. Of course there are nonlinear self homeomor-
phisms of the torus. For our proposes, they don’t matter since we shall see
that any self homeomorphism of the torus is essentially equivalent to a linear
one in the sense defined next.

Definition 4.1. Two homeomorphisms fi : M →M for i = 0, 1 are isotopic

if there exists a continuous function H : M × I → M such that

1. H(x, 0) = f0(x),

2. H(x, 1) = f1(x), and

3. H(x, t) : M → M is a homeomorphism for each fixed t.

We state two theorems without proof, but they should be intuitively
plausible. Proofs can be found in [1] and [20], respectively.

Theorem 4.1. Every homeomorphism from a torus to a torus is isotopic to
one induced by a 2 × 2 integer matrix with determinant ±1. See Figure 4.2.

Theorem 4.2. Let M be a 3-manifold and let T be a torus component of ∂M .
Let V be a solid torus and let fi : ∂V → T for i = 0, 1 be homeomorphisms.
Let Mi = M ∪fi

V be the result of gluing V to M via fi. If f0 is isotopic to
f1, then M0 is homeomorphic to M1.
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h0 h1

∼

Figure 4.2: Isotopic Torus Homeomorphisms

These two theorems tell us that the topological type of a Dehn surgery
is determined by the 2×2 matrix of a linearization of the attaching map.
However, it turns out that only the first column of the matrix is needed.
To see this we need to know a little more about what goes on inside a solid
torus.

Exercise 4.5. Compare and contrast the definitions of ambient isotopy, iso-
topy and homotopy. How are they similar how are they different? Look their
definitions up in several textbooks and compare.

Fact. Let f : T 2 → T 2 be continuous. Write T 2 as S1 × S1 and use the two
S1 factors for loops, with suitable orientations, whose equivalence classes
generate H1(T

2). Then the linearization matrix of f is the same as the
matrix for the group homomorphism f∗.
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Chapter 5

Seifert Manifolds

A Seifert fibered manifold is a 3-manifold M together with a fiber struc-
ture F that is a decomposition of M into a union of disjoint copies of S1,
called the fibers. We will start by describing Seifert fibrations of the solid
torus. The main references we have drawn on for this material are Seifert’s
original paper (in translation) [20], the course notes of Brin [2], a draft text-
book by Hatcher [5].

Consider the solid cylinder C = D2 × I. Let Fc = {{(r, θ)} × I : (r, θ) ∈
D2}. This gives a fibration of C by closed intervals. Let Di = D2 × {i} for
i = 0, 1 be the bottom and top disks of C respectively. For any real number ψ
let Rψ : D0 → D1 be given by Rψ(r, θ, 0) = (r, θ + ψ, 1). Identify D0 and D1

using Rψ as the homeomorphism to form a solid torus V . See Figure 5.1. If
ψ is a rational multiple of π the fibers of C become joined at their end points
to form circles. The core circle will contain just one copy of I. If ψ = m

n
2π

for coprime integers m and n then the other circles will be formed from n
copies of I. Such an object is called a

(

m

n

)

-fibration of the solid torus and
we will denote it by Vm/n. The core is called the exceptional fiber unless
m = 0 or n = 1 in which case we say the fibration is trivial. The index of
an exceptional fiber is the number of times nearby fibers meet a meridianal
disk and is equal to n. (Notice that for n = 1 it does not matter what m
is; the identification map with be the identity map.) Non-exceptional fibers
are called ordinary or regular fibers. If Vm/n is standardly embedded in
R

3 then it is fibered by (n,m) torus knots and its core. Now we can give the
general definition.

Definition 5.1. A Seifert fibered manifold is a 3-manifold M together
with a fiber structure F that is a decomposition of M into a union of disjoint
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Rφ

Figure 5.1: Fibered Cylinder/Solid Torus

copies of S1, called the fibers, such that each S1 fiber not in ∂M has a closed
tubular neighborhood that is a Seifert fibered solid torus and if ∂M 6= φ the
boundary components of M are tori fibered as though each was the boundary
of a Seifert fibered solid torus1.

If M is compact it can be shown that the number of exceptional fibers is
finite.

A given manifold M may have several different Seifert fibrations, only
one or none. Manifolds that do not have Seifert fibrations include the 3-
ball and all non prime manifolds except P 3#P 3. But what do we mean by
different? Two fibrations of a manifold M are fiber equivalent if there is
a homeomorphism h : M → M that takes fibers to fibers. We will denote
this by ∼=. Let F0 and F1 be two fibrations of a manifold M. They are fiber

isotopic if there is a continuous function S : M× I → M such that

1. S(·, 0) is the identity on M.

2. For any t ∈ I the S(·, t) induces a fibration on M. That is for each
fiber F ∈ F0 the image S(F, t) is a circle and for each t all these circles
fit together to form a fibration.

3. Finally, for t = 1 the induced fibration is F1.

Isotopic fibrations are fiber equivalent.

1Some authors allow for Klein bottles in the boundary too.
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1 Fibrations of the Solid Torus

Next we ask, when are two fibrations of the solid torus, Vm/n and Vm′/n′ ,
fiber equivalent? Changing the signs of both m and n makes no difference
and changing the sign of only one of them gives a fibration that is the mirror
image of the original. As we noted above full twists of the solid torus produce
fiber equivalent fibrations. Thus, disregarding the trivial fibration, we might
as well only allow 0 < m < n. However we can make a further restriction.
Since Vm/n ∼= V−m/n ∼= V−m

n
+1 = Vn−m

n

we can assume m ≤ n/2. Since m and

n must be coprime the only case where equality can occur is when n = 2,
which implies m = 1.

Theorem 5.1. Let Vi = Vmi/ni
for i = 1, 2 with 0 < mi ≤ ni/2, and suppose

h : V1 → V2 is a fiber preserving homeomorphism. Then m1 = m2 and
n1 = n2.

Proof. For i = 1, 2 let Fi ⊂ ∂Vi be fibers and suppose F2 = h(F1). We may
choose meridian-longitude pairs (Mi, Li) for Vi respectively and use them as
generators of H1(∂Vi). Then we have

Fi ∼ miMi + niLi

for i = 1, 2.
Now let Di be a meridianal disk in Vi with D2 = h(D1). Then Fi meets

Di in ni points. Since F2 = h(F1) meets D2 in n1 points we have n1 = n2;
call this number n.

We can restrict h to ∂V1 and then recall that it induces of homomorphism
from H1(∂V1) to H1(∂V2). To keep the notation simple we will also denote
this function by h.

Notice that h(M1) ∼ ±M2. If need be switch the orientation of M2 and
L2 so that h(M1) ∼ M2 without affecting the value of m2. Also h(L1) meets
h(M1) in one point and hence is a longitude. Thus h(L1) ∼ ±L2 + xM2 for
some integer x. We compute

F2 = h(F1) ∼ m1h(M1) + nh(L1) ∼ m1M2 + n(±L2 + xM2).

Hence
m2M2 + nL2 ∼ m1M2 ± nL2 + nxM2,

giving
(m2 −m1 − nx)M2 ∼ (±n− n)L2.
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By linear independence both sides must be null homologous. Thus, m2 −m1

is a multiple of n. Because of the restriction 0 < mi ≤ n/2 we have m1 =
m2.

Example 5.1. This is really a non-example. We give a decomposition of
a solid torus into circles that is not a valid Seifert fibration. On D2 use
the concentric circles with center the origin. Then for D2 × S1 let F =
{C × {θ} | for each circle C in D2 and θ ∈ S1} ∪ {{0} × S1}. This is not a
Seifert fibration since there is no tubular neighborhood of {0} × S1 of the
required type.

2 Fibrations of the 3-sphere

Suppose Vi = Vmi/ni
are glued via a homeomorphism h : ∂V1 → ∂V2 that

takes fibers to fibers and gives S3. We know that if h is isotopic to the linear
map

h =

[

0 1
1 0

]

.

the gluing will give S3. Thus in this case

[

0 1
1 0

] [

n1

m1

]

=

[

n2

m2

]

.

Thus m2 = n1 and n2 = m1.

Figure 5.2 shows an example. One solid torus has a 2/3 fibration and
the other has a 3/2 fibration. Thus there are two exceptional fibers. They
are unknotted while all the other fibers are trefoil knots. We note that while
V3/2

∼= V1/2 such a fiber preserving homeomorphism cannot be extended over
the rest of S3.

If either or both m and n, are 1 we can have one or zero exceptional fibers
respectively. It was proven by Seifert that these are the only fibrations of S3

[20, §11].

3 Fibrations of the lens spaces

I may get to this later. It is very similar to the 3-sphere case.
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Figure 5.2: A Seifert fibration of S3 [22]

4 Seifert fibered spaces over the 2-sphere

Additional examples of Seifert fibered spaces can be constructed as follows.
Start with D2 and create Dk by removing the interiors of k disjoint disks.
Let M0 = Dk × S1. This is obviously a Seifert fibered space with k + 1 tori
as boundary components, Ti for i = 0, ..., k; the fibers are p× S1 for p ∈ Dk.

A cross section of a fibered space is an embedded surface that meets
each fiber exactly once transversely. For M0 any surface Dk × ∗, for some
point ∗ ∈ S1, is a cross section. As we will see a little later there are many
other possible choices.

Let Vi be solid tori and hi : ∂Vi → Ti be homeomorphisms for i = 0, ..., k.
Use the hi’s to glue in the Vi. Call the resulting manifold M. Note that we
have not as of yet placed a fibration on M.

To characterize the hi’s we need to place a coordinate system on each ∂Vi
and Ti. For each ∂Vi choose a meridian Mi and a longitude Li. We will again
regard Mi as having slope ∞ and Li as having slope 0. On the Ti we don’t
have a clear notion of a meridian since Ti is not the boundary of a solid torus.
We will keep the obvious fibration of M0 and use a fiber from it in Ti as the
“slope ∞” axis. We will denote it Fi. For the “slope 0” axis we will select a
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cross section C of M0 and use its intersection with Ti as a coordinate axis of
“slope 0”. We will denote these Qi and refer to them as crossing curves.

Now each hi can be characterized, up to isotopy, by the slope of the image
ofMi in Ti using the chosen coordinates. For each i let the slope be αi/βi. We
require each slope to be finite, that is we do not allow hi to send a meridian
of ∂Vi to a fiber of Ti. We can then extend the fibration into each of the Vi.

We now denote the fibered manifold by S2

(

α0

β0

, . . . , αk

βk

)

.

Example 5.2. Suppose that M1 is taken by h1 to a 5

7
curve in T1. Find a

compatible fibration for V1.

Solution. The matrix for h∗ is on the form

[

a 7
b 5

]

since it must take

[

0
1

]

to
[

p
q

]

. If we let a = 4 and b = 3 we get determinant −1. Then the fiber on

∂V1 will be the inverse image of F1. Thus,
[

−5 7
3 −4

] [

0
1

]

=

[

7
−4

]

.

Then V1 has a −4

7
fibration.

Exercise 5.1. Notice S2(α/β) ≃ L(β, α). Show that S2(α0/β0, α1/β1) ≃
L(α0β1 + α1β0, α0α1). This exercise is taken from [19].

A set of slopes,
{

α0

β0

, . . . , αk

βk

}

, determines a Seifert fibered manifold. Of

course the order they are given in does not matter and we might as well
assume the α’s and β’s are coprime. But a space can be given by a different
set of slopes.

It is easy to check that

S2

(

α0

β0

, . . . ,
αk
βk

)

∼= S2

(

0,
α0

β0

, . . . ,
αk
βk

)

.

We claim further that

S2

(

α0

β0

, . . . ,
αi
βi
, . . . ,

αj
βj
, . . . ,

αk
βk

)

∼=

S2

(

α0

β0

, . . . ,

(

αi
βi

)

+ 1, . . . ,

(

αj
βj

)

− 1, . . . ,
αk
βk

)

.
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The argument comes down to choosing a different cross section of M0 when
determining the Qi’s. Start with the “obvious” cross section Dk × ∗. Draw
an arc A between any two boundary components of Dk. Then A× S1 is an
annulus in M0. Cut Dk×∗ along A then bend one side of the slit up and the
other down. Then reconnect the two sides of the silt with an annulus that
wraps around A×S1 some number of times, say n. This creates a new cross
section and changes the crossing curves on the two affected boundary tori of
M0. See Figure 5.3. Then the slopes change by +n on one of the tori and
−n on the other. If the arc went from a boundary curve back to itself the
changes cancel out. It can be shown that, up to isotopy, all possible cross
sections are obtainable in this way. Since changing the choice of cross section
does not change to fibration we have proved the claim.

Figure 5.3: New Cross Section

We can now put the slopes into a normal form

S2

(

α0,
α1

β1

, . . . ,
αk
βk

)

where 0 < αi < βi for i = 1, . . . , k. The integer α0 is called the obstruction

term2 If it is zero, it can be dropped. The other ratios we shall call the
gluing slopes. The subscript k is the number of exceptional fibers.

2The name comes from a theorem showing that unless α0 = 0 even when the exception
fibers are “drilled out” the orbit surface is not embedded in M0∪V0. So, it is an obstruction
to a certain embedding.
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We can get many other examples, in fact all other examples, by starting
with surfaces besides S2 although some additional “twisting” is also involved.

One more bit of terminology. If we take any Seifert fibered space and
then collapse each fiber to a point (look up quotient topology [10, 14]) the
result is a surface. It is called the orbit surface. In all the examples we
have studied the orbit surface is S2 or, in the case of a solid fibered torus, a
disk. The process of drilling out a tubular neighborhood of a fiber (ordinary
or exceptional) and replacing with another fibered torus does not change the
orbit surface. Note that the orbit surface is not usually a cross section of the
whole manifold.

5 Homology groups of Seifert fibered spaces

over the 2-sphere

Theorem 5.2. Consider the Seifert fibered space M with orbit surface S2

and k exceptional fibers with gluing slopes αi/βi for i = 1, . . . , k and obstruc-
tion term α0. Then H1(M) is the Abelian group with k+1 generators, which
we denote F,Q1, . . . , Qk, and the k + 1 relations,

α0F −Q1 − · · · −Qk = 0 and βiF + αiQi = 0,

for i = 1, . . . , k. The F generator can be represented by any ordinary fiber
and the Qi’s can be represented by the crossing curves described above.

Sketch of Proof. We shall give only a rough justification. The homology
group of a disk with k holes is isomorphic to Z

k and is generated by the
boundary curves of the holes. If we take the cross product with S1 we add
a new generator; it turns out, no new relations are created. Thus H1(M0)
is isomorphic to Z

k+1. As we glue in solid tori new relations are created
as crossing curves in the boundary tori are identified with boundaries of
meridianal disks. We can choose to glue the solid tori with exceptional fibers
to the inside tori giving the relations: βiF+αiQi = 0 for i = 1, . . . , k. For the
outer boundary torus the crossing curve is homologous to Q1 +Q2 + · · ·+Qk

(since together they bound a cross section surface) giving the remaining
relation.

Corollary 5.3. For n = 3 the order of H1(M) is

±(α0β1β2β3 + α1β2β3 + β1α2β3 + β1β2α3).
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By choosing the orientation of M we can arrange it so the + sign is used.

Proof. The relations can presented in matrix from as









α0 −1 −1 −1
α1 β1 0 0
α2 0 β2 0
α3 0 0 β3









.

By Theorem 3.2 we just have to compute its determinant.

Exercise 5.2. If there are no exceptional fibers then S2(α0) is a lens space.
Which one?
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Chapter 6

Trefoil Surgery Theorem

1 Dehn Surgery

Let M be a 3-manifold and let K be a knot in M with tubular neighborhood
N(K). Now remove the interior of N(K) from M ; let MK = M− int N(K).
Let V be a solid torus disjoint from M. Let h : ∂V → ∂N(K) ⊂ MK be a
homeomorphism. Now glue V to MK by using h to identify ∂V with ∂N(K).
Let MK,h = MK∪hV denote the new manifold. Its topological type depends
on both K and h but not on the choice of the tubular neighborhood. It is
known that every compact orientable 3-manifold without boundary can be
constructed via Dehn surgeries on S3; this result is due to Lickorish and
Wallace [18, Section 9.I.].

On ∂N(K) choose a meridian and a preferred longitude, one that bounds
a surface in MK . As with lens spaces the topological type of the resulting
space is determined by which (p, q)-curve on ∂N(K) a meridian of V is
mapped to. Thus we talk about (p, q)-surgery on a knot K in S3.

Fact. Let K be a knot in S3. The manifold obtained from preforming a
(p, q)-surgery on K has H1 ≡ Z/qZ.

Explanation. Let K be a knot in S3 and let N(K) be a tubular neighborhood
of K. Now let MK = S3 − int (N(K)). Then H1(MK) ≡ Z.

We will only sketch the proof. The homology group of the boundary of
N(K) has two generators. We take these to be a meridian M of N(K) and
the preferred longitude L. Now L bounds a Seifert surface and hence is null
homotopic, L ∼ 0. That leaves only M and it can be shown no power of M
is homologous to 0. Thus H(MK) ≡ Z.

51
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Take any knot complement manifold and glue in a solid torus using (p, q)
surgery. Call the manifold M. Now |q| times the meridian of the knot is
homologous to 0. The solid torus core is homologous to a preferred longitude
which in turn is homologous to 0. These two facts can be used to show that
H1(M) ≡ Z/qZ.

2 Louise Moser’s Theorem

We now have the tools in place to prove a classical theorem due to Louse
Moser that tells us which three manifolds may result from surgery along a
torus knot.

Theorem 6.1. Let K be an (r, s) torus knot in S3 and let M be the manifold
that results from preforming a (p, q) Dehn surgery along K. Set σ = rsp− q.

1. If |σ| > 1 then M is a Seifert manifold over S2 with three exceptional
fibers of multiplicities β1 = s, β2 = r and β3 = |σ|. The proof will show
how to compute the obstruction term and the three other αi terms.

2. If σ = ±1 then M is the lens space L(|q|, ps2).

3. If σ = 0 then M is L(r, s)#L(s, r).

Proof. The Set Up. We will use the R
3 ∪∞ model for S3. Let U be the

unit circle in the xy-plane and let Z be the z-axis union {∞}. We first
partition S3 into two solid tori, V ′

1 and V ′
2 , with common boundary, where

the core of V ′
1 is U and the core of V ′

2 is Z. Let M ′
i and L′

i be preferred
meridian-longitude pairs for V ′

i , i = 1, 2, where M ′
1 = L′

2 and L′
1 = M ′

2.
Now let K be an (r, s) torus knot on ∂V ′

1 = ∂V ′
2 . Let N(K) be a tubular

neighborhood of K that is small enough that Vi = V ′
i − intN(K) are still

solid tori, i = 1, 2. Thus V1 ∪ V2 is the knot complement space of K. The Vi
look like the V ′

i but with a trough dug out along K.
The intersection ∂V ′

i ∩ ∂N(K) consists of two curves parallel to K. Call
them Ki, i = 1, 2. They partition the boundary of each Vi into two annuli.
Let A be the annulus between the Ki that the Vi have in common, that is
A = V1 ∩ V2. Let A1 be ∂V1 − intA and A2 be ∂V2 − intA, that is A1 and A2

are the “bottoms” of the troughs.
Let (Mi, Li) be meridian-longitude pairs for Vi, i = 1, 2 chosen by retract-

ing M ′
i and and L′

i through N(K) as shown in Figure 6.1.
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V1

A

AA

A1

A1

A1
K1

K2

M1

L1

Figure 6.1: The Set Up: ∂V1 = A ∪ A1; ∂A = ∂A1 = K1 ∪K2

Let (M3, L3) be a preferred meridian-longitude pair for N(K). Recall this
means L3 ∼ 0 in V1 ∪ V2.

Next let V4 be a new solid torus with meridian-longitude pair (M4, L4).
This is the solid torus we shall glue to V1 ∪ V2 via a homeomorphism,

h : ∂V4 → ∂(V1 ∪ V2) = ∂N(K).

Let

[

a p
b q

]

be the matrix representing h. Thus h(M4) = pL3 + qM3.

The following homology calculation, done with respect to V1 ∪V2, will be
used repeatedly. K1 ∼ rZ and Z ∼ sM3 so K1 ∼ rsM3. Thus K1 − rsM3 ∼
0 ∼ L3.

h(M4) = pL3 + qM3

∼ p(K1 − rsM3) + qM3

= pK1 − (rsp− q)M3

= pK1 − σM3. (∗)

Case 1. Suppose |σ| ≥ 2. We augment our set up by using an (r, s)
fibration of S3 such that the knot K is now a fiber and the neighborhood of
K is required to be a fibered neighborhood. In this fibration U and Z have
multiplicities s and r respectively. We will need to figure out the fibration
of V4 such that h preserves fibers. The orbit surface will remain S2 for the
surgered manifold.
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Now M3 is a crossing curve on ∂N(K) and K1 is a fiber. Therefore, the
fibration of V4 will have a fiber of multiplicity |σ| as its core. So we have a

Seifert fibered space of the form S2

(

α0,
α1

s
, α2

r
, α3

|σ|

)

.

Example 6.1. Suppose K is a (3, 2) torus knot and that the Dehn surgery
is of type (6, 31). Thus r = 3, s = 2, p = 6, q = 31 and |σ| = 5.

Recall that by Corollary 5.3 the order of H1(M) is 30α0 +15α1 + 10α2 +
6α3. But from Fact 1 we have that the order of H1(M) is |q|. Thus we want
to find any solutions to

30α0 + 15α1 + 10α2 + 6α3 = 31.

Since s = 2 we know that α1 = 1. Using this and dividing both sides by 2
gives

15α0 + 5α2 + 3α3 = 8.

Since r = 3 and |σ| = 5 we know α2 ∈ {1, 2} and α3 ∈ {1, 2, 3, 4}. Clearly
then α0 ≤ 0. Suppose α0 = 0. Then α2 = 1 and α3 = 1 are the only
solutions. If α0 < 0 you can check that there are no other solutions.

Equations of this type are called linear Diophantine equations. There is
a general algorithm for finding their solutions. This is a fairly standard topic
in number theory textbooks [16, 17]. Try some other choices for r, s, p and
q.

Exercise 6.1. Let s = 2, r = 3, p = 5, and q = 2. Show that M =
S2(−1, 1/2, 1/3, 5/28).

Case 2. Suppose σ = ±1. Recall h =

[

a p
b q

]

. The topological type

of the Dehn surgery is determined solely by q and p. We are free to choose
a and b so long as det h = ±1. If we choose b = rs and a = 1 we get
det h = pb− aq = q − rsp = σ = ±1.

From equation (∗) we have h(M4) ∼ pK1∓M3. We did not need to study
h(L4) in Case 1, but here we do.

h(L4) = rsM3 + L3 ∼ rsM3 +K1 − rsM3 ∼ K1.

In other words the longitude on V4 is going to a curve parallel to the knot
K.
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Now we glue V4 to V1. We claim that in this case the result must be a
solid torus. Both V4 and V1 can be written as S1 × D2. For specificity we
write

V1 = S1 ×D1 and V4 = S4 ×D4.

Let γ be an arc in ∂D4 and let A4 = S4 × γ be the annulus in ∂V4 that
has core L4 and will be identified to A1 in ∂V1. Each copy of the disk D1 in
V1 meets A1 in r arcs. We can choose the homeomorphism to take each ∗×γ
arc to a component of A1 ∩ (∗′×D1). Then the union V1 ∪V4 can be realized
as a product S1 ×DD where DD is a disk formed by gluing r copies of D4

to 0 ×D1 along copies of γ. See Figure 6.2.

0 ×D1

0 ×D4

2π
3
×D4

4π
3
×D4

Figure 6.2: Cross section of V1 ∪ V4

Now that we see that V1∪V4 is a solid torus it is immediate that V1∪V4∪V2

is the gluing of two solid tori and hence a lens space. It remains to do some
homology calculations to determine which lens space it is.

Remember we have four sets of meridian-longitude pairs. But now we
need a fifth since V1 ∪ V4 is a new solid torus. Call these (M5, L5). We will
compute M5 in terms of (M2, L2), that is we shall solve

M5 = xL2 + yM2;

we won’t need to find L5. Then we will have the L(x, y) lens space.
Looking at Figure 6.3 we see that

L1 ∼ M2 + rM3 and M1 ∼ L2 − sM3.

These homology calculations are still in V1 ∪V2, the knot complement space.
(Figure 6.3 attempts to show V1 with a small tubular neighborhood of the
core drilled out, thus creating a thick torus (T 2 × I) with a trough dug out
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along K, which is presented as a cube with the top & bottom sides and the
left & right sides respectively identified. Not shown is V2 which would look
like the mirror image. Recall V1 and V2 are glued along the annulus A. To the
sides of V1 are diagrams showing how the various meridians and longitudes
are related if r = 3 and s = 2. It will likely take a good while for the reader
to see this.)

Now we glue in V4. Recall that K1 is an (r, s) curve. Thus,

M4 ∼ pK1 − σM3 ∼ p(rM1 + sL1) − σM3 = prM1 + psL1 − σM3.

And finally,

M5 ∼ M1 − σsM4

∼ M1 − σs(prM1 + psL1 − σM3)

∼ (1 − σrsp)M1 − σps2L1 + sσ2M3

∼ (1 − σrsp)(L2 − sM3) − σps2(M2 + rM3) + sM3 (σ2 = 1)

= (1 − σrsp)L2 − s(1 − σrsp)M3 − σps2M2 − σprs2M3 + sM3

= (1 − σrsp)L2 − σps2M2 + (−s + σprs2 − σprs2 + s)M3

= (1 − σrsp)L2 − σps2M2,

where these homology calculations are in the new manifold M. If σ = 1
then M5 ∼ −qL2 − ps2M2; if σ = −1 then M5 ∼ +qL2 + ps2M2. Therefore,
M ≃ L(|q|, ps2) as claimed.

Case 3. Suppose σ = 0. Then q = rsp. Since q and p can only have 1 as
a common divisor, and p > 0 by convention, it must be that p = 1. Thus by
equation (∗) h(M4) ∼ K1. That is the meridian M4 of V4 is identified with
K1. Another meridian, M ′

4, of V4 will then be identified with K2.
We construct the union V1 ∪V4 ∪V2 in stages. Partition V4 into two solid

cylinders C and C ′ by choosing two disjoint meridianal disks D and D′ in
V4 with ∂D = M4 and ∂D′ = M ′

4. The boundary of C minus the interiors of
the two disks is an annulus, call it A3. See Figure 6.4.

We glue C to V1 by attaching A3 to A1. This space has boundary D ∪
A ∪D′, which must be a 2-sphere, call it S. Likewise V2 ∪ C ′ is a manifold
whose boundary is a 2-sphere, call it S ′. Then M is formed from V1 ∪ C
and V2 ∪C ′ by identifying their boundary spheres. Thus M is the connected
some of two manifolds. We will show that V1 ∪C and V2 ∪C ′ are lens spaces
with an open 3-ball removed.
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L1

L1

L2

M1

M1

M2

M3

M3

A V1

Figure 6.3: V1 for r = 3, s = 2

In fact we claim V1 ∪ C is homeomorphic to the lens space L(r, s) minus
an open 3-ball. To see this we glue a 3-ball B to V1 ∪ C and show that this
space is L(r, s). We do this in two steps. Partition B into a solid torus VB
and a solid cylinder CB as shown in Figure 6.5. Let DB and D′

B be the disks
composing ∂B ∩ CB. Let AB = ∂B − int(DB ∪ D′

B). Attach C to CB by
identifying DB to D1 and D′

B to D2. Then C ∪ CB is a solid torus. Now
attach V1 to VB by identifying the annulus A1 with AB. As before this forms
a solid torus. Thus,

V1 ∪ C ∪ B = (V1 ∪ VB) ∪ (C ∪ CB)

is the union of two solid tori and is a lens space. Since a meridian ∂D1 of
C ∪CB is identified to an (r, s) curve on ∂(V1 ∪ VB) the lens space is L(r, s).

If we attach C ′ to V2 we can show that this is homeomorphic to the lens
space L(s, r) minus an open ball. Thus M is formed by taking the connected
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V1

A1

A1
A1

C
D

D′

A3

A

Figure 6.4: V1 and C

DB

D′
B

AB

Figure 6.5: The 3-ball B partitioned

sum of L(r, s) and L(s, r). Note: It is known that L(r, s)#L(s, r) cannot be
given a Seifert fibration.

This concludes the proof. The figure-8 knot has just four crossings and is
not a torus knot. Surgery along the figure-8 knot is the next logical topic to
pursue. This turns out to be much more involved than surgery along torus
knots. See [21] as a place to start. There is a large and growing literature on
this topic.
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